R Course: Data Visualization J

Fritz Guinther
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Note to myself: Activate all Animations before loading (search for
multiinclude)
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O R - Some Basics

© Discrete Data
@ Frequencies and Distributions

© Continuous Data
@ Frequencies and Distributions
@ Relations between Continuous Variables

@ Plotting Data vs. Analyses

© Stepwise Plotting

@ Controlling Graphical Parameters
@ Exporting Plots

© Colors
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@ Most of this course will focus on the base R plotting functions
@ Other options are the packages lattice and ggplot2

@ We can have a look at these later
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R - Some Basics
R - Some basics

@ Set your working directory with
setwd("C:/Users/fritz.guenther/Documents/R_course")

@ Check your current working directory with
getwd ()

@ Check the files in your current working directory with
dir()
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R - Some Basics
R - Some basics

@ Read a text table (here called datfile.txt) in your current working
directory with
read.table("datfile.txt")

@ Read a text table in some other directory with
read.table("C:/otherdir/datfile.txt")

@ Read a .csv file with
read.csv("datfile.csv")
or
read.csv2("datfile.csv") ,
depending on the .csv format (, vs. ;)
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R - Some Basics
R - Some basics

@ Save the data in a variable
dat <- read.table("datfile.txt")

@ Inspect the data
View(dat)
head(dat)

o Look at the data structure
str(dat)
summary (dat)
names (dat)
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R - Some Basics
R - Some basics

e Extract a column by name (here: the column named freq)
dat$freq
dat[,"freq"]

e Extract a column by position (here: the second column)
dat[,2]

e Extract a row by position (here: the third row)
dat[3,]

8 /264



R - Some Basics
R - Some basics

@ If you don’t know how a function works, use
7func
(with func being the name of the function)
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Discrete Data Frequencies and Distributions

Discrete Data:
Frequencies and Distributions
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Discrete Data Frequencies and Distributions

Discrete Data

@ Discrete Data refers to cases where we have a finite, countable
number of possible values

e Examples: native language, Yes/No-answers, one of X different
sentence arrangements; strictly speaking, also error rates

@ In a sense, also rating scales (for example rating 1-5 or 1-7) are also
discrete data; however, these typically have ordinal structure
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Discrete Data Frequencies and Distributions

Discrete Data

@ Our token data set: Sentence fragment arrangement

e Participants are given some sentence fragments (A, B, C) and have to
arrange their order
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Discrete Data Frequencies and Distributions

Read the Data

dat <- read.table("sentence_arrangement.txt", header=T)
@ header = T tells R that the first row contains the variable names

@ Table of the response patterns
table(dat$arrangement)
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Inspect the Data

Discrete Data Frequencies and Distributions

str(dat)

We have 3 conditions a 10 participants, as well as their response
patterns (arrangement)

condition is not a number, but an experimental factor. Therefore:
dat$condition <- as.factor(dat$condition)

We further have their response times (RT) — when they started
arranging the fragments — and their finishing times (FT) — when they
completed the arrangements

Within each condition, we have data for two different time points
(pre and post)

We also have participant answers whether the sentence is true
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Discrete Data Frequencies and Distributions

Bar plot of the response patterns

Rbarplot(table(dat$arrangement))
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Discrete Data Frequencies and Distributions

Bar plot: Customizing

barplot(table(dat$arrangement),
xlab="response pattern",ylab="frequency")
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Discrete Data Frequencies and Distributions

R Basics

@ Strings in quotation marks ("red”) are characters

@ Strings without quotation marks (colors) are variable names (i.e.,
program code)
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Discrete Data Frequencies and Distributions

Bar plot: Customizing

barplot(table(dat$arrangement),
col="red")
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Discrete Data Frequencies and Distributions

Colors in R: Colors with names

http:
//research.stowers.org/mcm/efg/R/Color/Chart/ColorChart.pdf
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Discrete Data Frequencies and Distributions

Bar plot: Customizing

barplot(table(dat$arrangement),
horiz=T)
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Discrete Data Frequencies and Distributions

Bar plot: Customizing

barplot(table(dat$arrangement),
space=5)
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Discrete Data Frequencies and Distributions

Bar plot by condition

barplot(table(dat$arrangement,dat$condition))
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Discrete Data Frequencies and Distributions

Bar plot by condition: Customizing

barplot(table(dat$arrangement,dat$condition),
legend=T)

80
L

60
L

20
L

Look crappy, let's position the legend somewhere else

23 /264



Discrete Data Frequencies and Distributions

Bar plot by condition: Customizing

barplot(table(dat$arrangement,dat$condition),

legend=T,x1lim=c(0,6) ,args.legend=1ist (x=6))
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Discrete Data Frequencies and Distributions

R Basics

@ Create a vector of elements
colors <- c("black","red")
values <- c(0,6)
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Discrete Data Frequencies and Distributions

Bar plot by condition: Customizing

@ More flexibility
len <- length(unique(dat$condition))
barplot(table(dat$arrangement,dat$condition),

legend=T,x1lim=c(0,len+3) ,args.legend=1list (x=len+3))
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Discrete Data Frequencies and Distributions

Bar plot by condition: Customizing

len <- length(unique(dat$condition))
barplot(table(dat$arrangement,dat$condition),
legend=T,x1lim=c(0,len+3) ,args.legend=1list (x=len+3),

col="red")
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Discrete Data Frequencies and Distributions

Bar plot by condition: Customizing

len <- length(unique(dat$condition))
barplot(table(dat$arrangement,dat$condition),
legend=T,x1lim=c(0,len+3) ,args.legend=1list (x=len+3),

col=c("red","orange","yellow","green","blue","purple"))
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Discrete Data Frequencies and Distributions
Bar plot by condition: Customizing

len <- length(unique(dat$condition))
barplot(table(dat$arrangement,dat$condition),
legend=T,x1lim=c(0,len+4),
args.legend=1list(x=len+4,title="response pattern"),
col=c("red","orange","yellow","green","blue","purple"),

xlab="condition",ylab="frequency")
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Discrete Data Frequencies and Distributions

Mosaic Plot

mosaicplot(table(dat$condition,dat$arrangement))

table(dat$condition, dat$arrangement)
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Discrete Data Frequencies and Distributions

Mosaic Plot: Prettier

mosaicplot(table(dat$condition,dat$arrangement),
main="Mosaic Plot",las=1)
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Discrete Data

Mosaic Plot: Customizing

Frequencies and Distributions

mosaicplot(table(dat$condition,dat$arrangement),

main="Mosaic Plot",

col=c("red","orange","yellow","green","blue", "purple"))
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Discrete Data Frequencies and Distributions

Mosaic Plot: Turning it around

mosaicplot(table(dat$arrangement,dat$condition),
main="Mosaic Plot",las=2,
col=c("red","orange","yellow","green","blue", "purple"))

Mosaic Plot

| !
|

ABC
CBA

| I =cA
| I

] O I BAC

33/264



Discrete Data Frequencies and Distributions

Mosaic Plot

@ Mosaic Plots are nice for visualising multi-dimensional frequency data

@ Let's include the time (pre vs. post) first
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Discrete Data Frequencies and Distributions

Mosaic Plot: More Dimensions

@ Mosaic Plot including Time
mosaicplot(table(dat$time,dat$arrangement,dat$condition),

main="Mosaic Plot",las=2)
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Discrete Data Frequencies and Distributions

Mosaic Plot: Customizing

@ mosaicplot(table(dat$time,dat$arrangement,dat$condition),
main="Mosaic Plot",las=2,col=TRUE)
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Discrete Data Frequencies and Distributions

Mosaic Plot: Customizing

@ mosaicplot(table(dat$time,dat$arrangement,dat$condition),
main="Mosaic Plot",las=2,

col=c("red","orange","yellow","green","blue", "purple"))

Mosaic Plot
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Discrete Data Frequencies and Distributions

Mosaic Plot: Customizing

@ mosaicplot(table(dat$time,dat$arrangement,dat$condition),
main="Mosaic Plot",las=2,

col=c("red","orange","yellow","green","blue", "purple"))

Mosaic Plot
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Discrete Data Frequencies and Distributions

Mosaic Plot: Customizing

@ mosaicplot(table(dat$time,dat$arrangement,dat$condition),
main="Mosaic Plot",las=2,cex=.4,
col=c("red","orange","yellow","green","blue", "purple"))
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Discrete Data Frequencies and Distributions

Mosaic Plot: Re-Order Variables

mosaicplot(table(dat$arrangement,dat$time,dat$condition),
main="Mosaic Plot",las=2,cex=.4,

col=c("red","orange","yellow","green","blue", "purple"))
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Discrete Data Frequencies and Distributions

Mosaic Plot: Re-Order Variables

mosaicplot(table(dat$arrangement,dat$condition,dat$time),
main="Mosaic Plot",las=1,

col=c("red","orange","yellow","green","blue", "purple"))
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Discrete Data Frequencies and Distributions

Mosaic Plot: Even more dimensions

mosaicplot(
table(dat$time,dat$condition,dat$true,datParrangement),

main="Mosaic Plot",las=1,cex=.6,col=T)
Mosaic Plot

42 /264



Continuous Data Frequencies and Distributions

Continuous (Metric) Data:
Frequencies and Distributions
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Continuous Data Frequencies and Distributions

Continuous Data

@ Discrete Data refers to cases where we have an infinite,
non-countable number of possible values

@ Examples: response times, N400-amplitudes, gaze durations
@ In practice (but not from a theoretical point of view!), the line

between discrete and continuous data can become blurry: ratings on
a 1-100 scale, error rates computed from a large number of trials
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Continuous Data Frequencies and Distributions

Box Plot of response times

boxplot (dat$RT)
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Continuous Data Frequencies and Distributions

Box Plot of response times

@ What can | see in a box plot?
@ Outer lines: minimum and maximum value
e Thick middle line: median (50% of values below this point)

@ Outer edges of the box: 1st and 3rd quartile (25% / 75% of values
below these points)
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Continuous Data Frequencies and Distributions

Box Plot: Turning it around

boxplot(dat$RT,horizontal=T)
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Continuous Data Frequencies and Distributions

Box Plot by condition

boxplot (RT ~ condition,dat)
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Continuous Data Frequencies and Distributions

R Basics

@ The ~ symbol ("tilde") is used in a formula object

@ Read

RT ~ condition
as "RT predicted by condition”
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Continuous Data Frequencies and Distributions

Box Plot: Customizing

boxplot(RT ~ condition,dat,
col= c("red","orange","yellow"))
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Continuous Data Frequencies and Distributions

Histogram of response times

hist (dat$RT)

Histogram of dat$RT
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Continuous Data Frequencies and Distributions

Histogram and Box Plot

@ A box plot is a histogram " as seen from above”
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Continuous Data Frequencies and Distributions

Histogram: Customizing

hist(dat$RT,main="Histogram",xlab="Response Time", col="red")
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Continuous Data Frequencies and Distributions

Histogram: Customizing

hist(dat$RT,main="Histogram",xlab="Response Time",
col="red" ,breaks=100)
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Continuous Data Frequencies and Distributions

Histogram: Customizing

@ Density instead of frequency
hist(dat$RT,main="Histogram",xlab="Response Time",
col="red",breaks=100,freq=F)
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Continuous Data Frequencies and Distributions

Kernel Density Plot

@ ("Smoothed Histograms")
plot(density(dat$RT))

density.default(x = dat$RT)
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Continuous Data Frequencies and Distributions

Kernel Density Plot: Customizing

plot(density(dat$RT),
main="Kernel density plot",xlab="Response Time",col="red")
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Continuous Data Frequencies and Distributions

Kernel Density Plot: Customizing

d <- density(dat$RT)
plot(d,main="Kernel density plot",xlab="Response Time")
polygon(d,col="red")

Kernel density plot
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Continuous Data Frequencies and Distributions

Kernel Density Plot by condition

o First install the sm package
install.packages("sm")

library(sm)

@ If you don't know which functions a package includes, use
help(package="sm")

59 /264



Continuous Data Frequencies and Distributions

Kernel Density Plot by condition

sm.density.compare(dat$RT, dat$condition,xlab="Response
Time")
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Continuous Data Frequencies and Distributions

Kernel Density Plot by condition

sm.density.compare(dat$RT, dat$condition,xlab="Response
Time",
lty=c(1,1,1),col=c("green","brown","orange"))
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Continuous Data Frequencies and Distributions

Continuous (Metric) Data:

Means and Deviations
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Continuous Data Frequencies and Distributions

Bar Plot of means

m <- aggregate(RT ~ condition,dat,mean)
barplot (m$RT,names.arg=m$condition)
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Continuous Data Frequencies and Distributions

R Basics

@ The aggregate() splits the data into subsets and performs a given
operation on all subsets individually

@ aggregate(RT ~ condition,dat,mean) splits dat by condition,
and then applies the mean () function to the RT column

@ The data can be split over several variables at the same time:
aggregate(RT ~ condition + time,dat,mean)
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Continuous Data Frequencies and Distributions

Bar Plot of means: Customizing

m <- aggregate(RT ~ condition,dat,mean)
barplot (m$RT,names.arg=m$condition,

col="red",xlab="Condition",ylab="Mean RT (in ms)")
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Continuous Data Frequencies and Distributions

Bar Plot of means: Error Bars

o Installing and loading the sciplot package
install.packages("sciplot")
library(sciplot)

o Package included the bargraph.CI() function
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Continuous Data Frequencies and Distributions

Bar Plot of means: Error Bars

bargraph.CI(x.factor=dat$condition,response=dat$RT)
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Continuous Data Frequencies and Distributions

Bar Plot of means: Adjusting the y-axis

bargraph.CI(x.factor=dat$condition,response=dat$RT,
ylim=c(1400,1900))
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Continuous Data Frequencies and Distributions

Adjusting the y-axis

@ Adjusting the y-axis is a great way to misrepresent your data and
mislead your audience:
https://heap.io/blog/data-stories/
how-to-lie-with-data-visualization

Same Data, Different Y-Axis

Interest Rates Interest Rates
3.154% 3.50%
3.152% 3.00%
3.150% 2.50%
3.148% 2.00%
3.146% 1.50%
3.144% 1.00%
3.142% 0.50%
3.140% 0.00%
2008 2009 2010 2011 2012 2008 2009 2010 2011 202
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Continuous Data Frequencies and Distributions

Bar Plot of means: Error Bars

@ One main purpose of error bars is to provide at leat some reference
frame
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Continuous Data Frequencies and Distributions

Bar Plot of means: Error Bars

@ One main purpose of error bars is to provide at leat some reference
frame

@ Another purpose is of course to indicate the variability of data, which
is critical when it comes to the statistical testing for effects
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Continuous Data Frequencies and Distributions

Bar Plot of means: Error Bars

@ One main purpose of error bars is to provide at leat some reference
frame

@ Another purpose is of course to indicate the variability of data, which
is critical when it comes to the statistical testing for effects

@ However, in many cases, it's not completely clear which error bars
should be used
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Continuous Data Frequencies and Distributions

Bar Plot of means: Error Bars

@ Moreover, errors bars are also criticized:
http:
//biostat.mc.vanderbilt.edu/wiki/Main/DynamitePlots
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Continuous Data Frequencies and Distributions

Bar Plot of means: Error Bars

@ Moreover, errors bars are also criticized:
http:
//biostat.mc.vanderbilt.edu/wiki/Main/DynamitePlots

@ We will deal with these issues later
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Continuous Data Frequencies and Distributions

Bar Plot of means: Error Bars

@ At this point, the Box Plot by conditions might be one of the most
“honest” ways to display the data
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Continuous Data Frequencies and Distributions

Bar Plot of means: Error Bars

@ At this point, the Box Plot by conditions might be one of the most
“honest” ways to display the data

@ Something like vertical histograms might be even better, but they

need some coding in R (which is why we won't deal with them here)
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Continuous Data Frequencies and Distributions

Bar Plot of means: Two-factorial

@ Include a second factor in the plots:
bargraph.CI(x.factor=dat$condition,group=dat$time,
response=dat$RT,ylim=c(1400,2000))
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Continuous Data Frequencies and Distributions

Bar Plot of means: Two-factorial with legend

bargraph.CI(x.factor=dat$condition,group=dat$time,
response=dat$RT,ylim=c (1400,2000) ,legend=T)

2000
|

| Tl

o o _T12
S _|
>
=1
o
Q
]
-
o
S |
~
—
o
Q
@
-
o
o |
iy}
—
g | N =
o
<
-

1 2 3

74/ 264



Continuous Data Frequencies and Distributions

Bar Plot of means: Customize

bargraph.CI(x.factor=dat$condition,group=dat$time,
response=dat$RT,ylim=c(1400,2000) ,legend=T,
x.leg=1,xlab="Condition",ylab="Response Time (ms)")
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Continuous Data Frequencies and Distributions

Line Plot of means

@ In many publications, you will see Line Plots instead of Bar Plots to
display the mean values and standard error per condition
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Continuous Data Frequencies and Distributions

Line Plot of means

@ In many publications, you will see Line Plots instead of Bar Plots to
display the mean values and standard error per condition

@ This is mostly convention, but it can be justified
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Continuous Data Frequencies and Distributions

Line Plot of means

@ In many publications, you will see Line Plots instead of Bar Plots to
display the mean values and standard error per condition

@ This is mostly convention, but it can be justified

@ The only thing that matters for a Bar Plot is their height; however,
there are more (unnecessary) dimensions on display (width, area)
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Continuous Data Frequencies and Distributions

Line Plot of means

@ In many publications, you will see Line Plots instead of Bar Plots to
display the mean values and standard error per condition

@ This is mostly convention, but it can be justified

@ The only thing that matters for a Bar Plot is their height; however,
there are more (unnecessary) dimensions on display (width, area)

@ Sometimes, the area can be informative, and here it can get confusing
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Continuous Data Frequencies and Distributions

Line Plot of means

lineplot.CI(x.factor=dat$condition,group=dat$time,
response=dat$RT,ylim=c (1400,2000))
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Continuous Data Frequencies and Distributions

Line Plot of means: Customize

lineplot.CI(x.factor=dat$condition,group=dat$time,
response=dat$RT,ylim=c(1400,2000) ,legend=T,
x.leg=1,xlab="Condition",ylab="Response Time (ms)")

Response Time (ms)
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Continuous Data Frequencies and Distributions

Line Plot of means: Customize

lineplot.CI(x.factor=dat$condition,group=dat$time,
response=dat$RT,ylim=c(1400,2000) ,legend=T,
x.leg=1,x1lab="Condition",ylab="Response Time (ms)",

type="p")
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Continuous Data Frequencies and Distributions

Line Plot of means: Customize

lineplot.CI(x.factor=dat$condition,group=dat$time,
response=dat$RT,ylim=c(1400,2000) ,legend=T,
x.leg=1,x1lab="Condition",ylab="Response Time (ms)",
type="p",pch=c(17,8)
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Continuous Data

Points in R: The pch option

Frequencies and Distributions
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Continuous Data Relations between Continuous Variables

Relations between Variables

@ We have discussed plots of multi-dimensional data before:

o Multiple discrete variables: stacked Bar Plots, Mosaic Plots,
overlapping Kernel Density Plots

o Multiple discrete 4+ 1 continuous variable: Bar/Line Plots by condition

@ Now we turn to cases with multiple continuous variables

82/264



Scatter Plot

Continuous Data

plot(dat$RT,dat$FT)

dat$FT
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Continuous Data Relations between Continuous Variables

Scatter Plot: Customize

plot(dat$RT,dat$FT,
xlab="Starting Time (ms)",ylab="Finishing Time (ms)",
pch=20,col="grey")
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Continuous Data Relations between Continuous Variables

Scatter Plot: Alternative command

plot(FT ~ RT, data = dat,
xlab="Starting Time (ms)",ylab="Finishing Time (ms)",
pch=20,col="grey")
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Continuous Data Relations between Continuous Variables

Scatter Plot by Condition

@ We now make a first step in the direction of step-wise plotting
@ General procedure: Create a plot containing the points for one

condition, then add the points for the other conditions in a different
color
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Continuous Data Relations between Continuous Variables

R Basics: Indexing

@ See Introduction: data frames can be indexed using the [,] square

brackets
dat[1,] extracts the first row

@ Create an index that only extracts a certain factor level:

dat [dat$condition == 1,]

@ Logical operators in R:

I=

<or >

<= or >=

&

&&

|

|

hink

1 (X) (where X is another statement)

equal to

not equal to
smaller/greater than
smaller/greater or equal
element-wise AND
AND

element-wise OR

OR

included in

NOT
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Continuous Data Relations between Continuous Variables

Scatter Plot by condition

plot(FT ~ RT, data = dat[dat$condition == 1,],
xlab="Starting Time (ms)",ylab="Finishing Time (ms)",
pch=20,col="blue")
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Continuous Data Relations between Continuous Variables

Scatter Plot by condition

@ Ensure that the axes are sufficiently long to display all data
plot(FT ~ RT, data = dat[dat$condition == 1,],
xlab="Starting Time (ms)",ylab="Finishing Time (ms)",
pch=20,col="blue",xlim=range (dat$RT) ,ylim=range (dat$FT))
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Continuous Data Relations between Continuous Variables

Scatter Plot by condition

@ Add the points for condition 2
plot(FT ~ RT, data = dat[dat$condition == 1,],
xlab="Starting Time (ms)",ylab="Finishing Time (ms)",
pch=20,col="blue",ylim=range (dat$FT))

points(FT ~ RT,data=dat[dat$condition==2,],
pch=20,col="red")

3000 3500
I I

Finishing Time (ms)
2500

2000
I

1400 1600 1800 2000

Starting Time (ms) 90 /264



Continuous Data Relations between Continuous Variables

Scatter Plot by condition

@ Add the points for condition 3
plot(FT ~ RT, data = dat[dat$condition == 1,],
xlab="Starting Time (ms)",ylab="Finishing Time (ms)",
pch=20,col="blue",ylim=range (dat$FT))

points(FT ~ RT,data=dat[dat$condition==2,],
pch=20,col="red")

points(FT ~ RT,data=dat[dat$condition==3,],
pch=20,col="green")
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Continuous Data

Scatter Plot by condition

@ Add the points for condition 3

Relations between Continuous Variables
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Continuous Data Relations between Continuous Variables

Scatter Plot by condition

@ Another (maybe simpler) method:
cols <- c("blue","red","green")
cols2 <- cols[as.numeric(dat$condition)]
plot(FT ~ RT,data=dat,col=cols2,pch=20)

3500

3000

FT
2500

2000

1400 1600 1800 2000

RT 93 /264



Continuous Data Relations between Continuous Variables

Scatter Plot by condition

o Add a legend

plot(FT ~ RT, data = dat[dat$condition == 1,],
xlab="Starting Time (ms)",ylab="Finishing Time (ms)",
pch=20,col="blue",ylim=range (dat$FT))

points(FT ~ RT,data=dat[dat$condition==2,],
pch=20,col="red")

points(FT ~ RT,data=dat[dat$condition==3,],
pch=20,col="green")

legend(x ="topleft",legend=c(1,2,3),
col=c("blue","red","green") ,pch=20,title="Condition")
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Continuous Data Relations between Continuous Variables

Scatter Plot by condition
o Add a legend

8
n —|Condition .
™ .
<1 e . .
.« 2 . .t e, .
° .3 .
g
7 ®
S
E . .
° .
£
o
kg ]
Tel
£ «
e
Q
£
w
o
S _|
S
N

T T T T
1400 1600 1800 2000

Starting Time (ms)
95 /264



Continuous Data Relations between Continuous Variables

Scatter Plot by two conditions: An example

plot(FT ~ RT, data=dat[dat$condition==1 & dat$time=="T1",],
xlab="Starting Time (ms)",ylab="Finishing Time (ms)",
pch=20,col="blue",ylim=range (dat$FT) ,xlim=range (dat$RT))
points(FT ~ RT, data=dat[dat$condition==1 &
dat$time=="T2",] ,pch=20,col="1lightblue")

points(FT ~ RT,data=dat[dat$condition==2 &
dat$time=="T1",],pch=20,col="red")

points(FT ~ RT,data=dat[dat$condition==2 &
dat$time=="T2",],pch=20,col="pink")

points(FT ~ RT,data=dat[dat$condition==3 &
dat$time=="T1",],pch=20,col="green")

points(FT ~ RT,data=dat[dat$condition==3 &
dat$time=="T2",],pch=20,col="lightgreen")

legend (x="topleft",legend=c(1,2,3,rep("T1",3) ,rep("T2",3))
,col=c(rep("white",3),"blue","red","green",
"lightblue","pink","lightgreen") ,pch=20,ncol=3)
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Continuous Data Relations between Continuous Variables

Scatter Plot by two conditions: An example
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Continuous Data Relations between Continuous Variables

Linear Regression

@ Regression: Predict one value with another value (or a set of other
values)

@ Linear Regression: y = b-x+ a+ ¢,
with e being an unsystematic error

@ Estimate a and b by minimizing the deviation between predicted and
actual values
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Continuous Data Relations between Continuous Variables

Linear Regression

plot(FT ~ RT,data=dat,
xlab="Starting Time (ms)",ylab="Finishing Time (ms)",
pch=20,col="grey")

regr <- 1m(FT ~ RT,data=dat)

abline(regr)
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Continuous Data Relations between Continuous Variables

Linear Regression: Customize

plot(FT ~ RT,data=dat,
xlab="Starting Time (ms)",ylab="Finishing Time (ms)",
pch=20,col="grey")

regr <- 1m(FT ~ RT,data=dat)
abline(regr,lty=2,1lwd=3)
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Continuous Data Relations between Continuous Variables

Lines in R: The 1ty option

6.'twodash’ —~—ce—ecc—ecc—-

5.longdash’ = —— = —— .

4.'dotdash’ == === cw-. -
3.'dotted” @ ~=-=====------

2'dashed’ = = = = = = =

1.'solid’

0.'blank’
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Continuous Data Relations between Continuous Variables

Linear Regression: Confidence Intervals (the long way)

@ You might want to add some indication about the confidence of your
prediction: A confidence interval around the predicted values

Long script:

plot(FT ~ RT,data=dat,

xlab="Starting Time (ms)",ylab="Finishing Time (ms)",
pch=20,col="1lightgrey")

regr <- 1m(FT ~ RT,data=dat)

abline(regr,lwd=2)

newdat <- seq(min(dat$RT)-50,max(dat$RT)+50,length.out=10000)

CI <- predict(regr, newdata=data.frame(RT=newdat),
interval="confidence", level = 0.95)

matlines(newdat, CI[,2:3], 1ty=2,col="black")
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Continuous Data Relations between Continuous Variables

Linear Regression: Confidence Intervals (the long way)
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Continuous Data Relations between Continuous Variables

Linear Regression: Confidence Intervals (the short way)

@ Use the effects package install.packages("effect")
library(effects)
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Continuous Data Relations between Continuous Variables

Linear Regression: Confidence Intervals (the short way)

regr <- 1m(FT ~ RT,data=dat)

plot(effect ("RT",regr))
RT effect plot
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Continuous Data Relations between Continuous Variables

Linear Regression: Customize

@ The plot.effect command (called when using plot(effect(...)))
has a lot of options

@ These are arranged into several clusters, and each cluster can be
specified using a 1ist

@ See the help function at ?plot.effect
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Continuous Data Relations between Continuous Variables

Linear Regression: Customize

regr <- 1m(FT ~ RT,data=dat)

plot(effect ("RT",regr),ylim=range (dat$FT),
xlab="Starting Time (ms)",ylab="Finishing Time (ms)",main="",
lines=list(col="black"),axes=list(ylim=range(dat$FT)) ,rug=F)
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Continuous Data Relations between Continuous Variables

Linear Regression: Customize

@ Adding points takes a bit of a workaround with the lattice package

install.packages("lattice")
library(lattice)

regr <- 1m(FT RT,data=dat)

plot(effect ("RT",regr),ylim=range (dat$FT),
xlab="Starting Time (ms)",ylab="Finishing Time (ms)",main="",
lines=list(col="black") ,axes=1list(ylim=range(dat$FT)) ,rug=F)

trellis.focus("panel", 1, 1, highlight=F)
panel.points(dat$RT, dat$FT,pch=20,col="black",cex=.3)

trellis.unfocus()

@ There are simpler options using the ggplot2 package
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Continuous Data

Linear Regression: Customize

Finishing Time (ms)

Relations between Continuous Variables
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Continuous Data Relations between Continuous Variables

Linear Regression by condition

plot (FT ~ RT,data=dat[dat$condition==1,],
xlab="Starting Time (ms)",ylab="Finishing Time (ms)",
pch=20,col="blue",ylim=range (dat$FT) ,xlim=range (dat$RT))

abline(1m(FT ~ RT,data=dat[dat$condition==1,]),col="blue")

points(FT ~ RT,data=dat[dat$condition==2,],pch=20,col="red")
abline(Im(FT ~ RT,data=dat[dat$condition==2,]),col="red")

points(FT ~ RT,data=dat[dat$condition==3,],
pch=20,col="black")

abline(1Im(FT ~ RT,data=dat[dat$condition==3,]),col="black")

legend(x ="topleft",legend=c(1,2,3),
col=c("blue","red","black"),lty=1,title="Condition")
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Continuous Data Relations between Continuous Variables

Linear Regression by condition
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Continuous Data Relations between Continuous Variables

Linear Regression by condition

regr <- 1m(FT ~ RT*condition,data=dat)
plot(effect ("RT*xcondition",regr))

RT*condition effect plot
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Continuous Data Relations between Continuous Variables

Linear Regression by condition

regr <- 1m(FT ~ RT*condition,data=dat)

plot(effect ("RT*xcondition",regr),lines=list(multiline=TRUE))
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Continuous Data

Linear Regression by condition

Relations between Continuous Variables

regr <- 1m(FT ~ RT*condition,data=dat)

plot(effect ("RT*xcondition",regr),lines=list(multiline=TRUE),
confint = list(style="bands"))

RT*condition effect plot
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Continuous Data Relations between Continuous Variables

Non-linear Regression

@ Sometimes, the relation between two variables is not linear

In these cases, a non-linear regression design can be helpful

Be careful: This can increase the degrees of freedom of your analysis
substantially!

Do you have a reason to expect non-linear effects?
(On the other hand, why should linear be the default?)

115 /264



Continuous Data Relations between Continuous Variables

Non-linear Regression

@ Sometimes, the relation between two variables is not linear

In these cases, a non-linear regression design can be helpful

Be careful: This can increase the degrees of freedom of your analysis
substantially!

Do you have a reason to expect non-linear effects?
(On the other hand, why should linear be the default?)
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Continuous Data

Non-linear Regression

@ Example: Word Frequency Effect
(Brysbaert, Mandera & Keuleers, 2017)

PProbability of Words Being Knawn

Relations between Continuous Variables

= High Vocabulary
= = = Medium Vocabulary
= Low Vocabulary

3 4 5 B 7
Word Frequency (Zipf)

Response Time {ms)

Ward Frequency (Zipf)
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Continuous Data Relations between Continuous Variables

Non-linear Regression: Quadratic Regression

@ Create a new column FTnew in your data frame which is based on RT
raised to the power of 2, plus some noise
dat$FTnew <- (dat$RT-1400) "2 + rnorm(nrow(dat),0,20000)

o Fit a new regression model
regr2 <- 1m(FTnew ~ poly(RT,2),data=dat)

@ Also allows the use of higher-order polynomials
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Continuous Data Relations between Continuous Variables

Non-linear Regression: Quadratic Regression

regr2 <- 1lm(FTnew ~ poly(RT,2),data=dat)
plot (FTnew ~ RT,data=dat,pch=20,cex=.3)
lines(sort(dat$RT),fitted(regr2) [order (dat$RT)],col="red")
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Continuous Data Relations between Continuous Variables

Non-linear Regression: Generalized

e With a quadratic regression (i.e., polynomial degree 2), we are
committing to a specific shape of relation

@ We can relax this assumption by considering generalized non-linear
effects

o Fit a non-linear regression model:
regr3 <- loess(FTnew ~ FT, data=dat)

@ This function relies on local polynomial fitting
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Continuous Data Relations between Continuous Variables

Non-linear Regression: Generalized

plot(FTnew FT,data=dat,pch=20,cex=.3)
regr3 <- loess(FTnew ~ FT,data=dat)
lines(sort(dat$FT),fitted(regr3) [order (dat$FT)],col="blue")
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Continuous Data Relations between Continuous Variables

Non-linear Regression: Generalized

@ Another option for non-linear effects are Generalized Additive Models
(GAMs) as implemented in the mgcv package:
install.packages("mgcv")
library (mgcv)

@ Again, be a bit careful with non-linear effects

o Fit a GAM:
regrd j- gam(FTnew s(FT),data=dat)

@ s() to include a non-linear effect
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Continuous Data Relations between Continuous Variables

Non-linear Regression: Generalized

regr4d <- gam(FTnew ~ s(FT),data=dat)
plot(regr4,xlab="Finishing Time",ylab="Effect")
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Continuous Data Relations between Continuous Variables

Non-linear Regression: Generalized

plot(FTnew ~ FT,data=dat,pch=20,cex=.3)
regr4 <- gam(FTnew ~ s(FT),data=dat)
lines(sort(dat$FT),fitted(regrd) [order(dat$FT)],col="purple")
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Continuous Data Relations between Continuous Variables

Linear Regression: Continuous interactions

o Fit a regression model predicting FTnew from a linear interaction
between RT and FT
creg <- 1m(FTnew ~ RT*FT,data=dat)

@ With an interaction, the effect of one of these predictors on the
outcome depends on the value of the other predictor
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Continuous Data Relations between Continuous Variables

Linear Regression: Continuous interactions

@ Option 1: "Splitting” one of the variables into discrete levels

@ The easiest way of doing this employs the effects package
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Continuous Data Relations between Continuous Variables

Linear Regression: Continuous interactions

cregl <- 1m(FTnew ~ RT*FT,data=dat)
plot(effect ("RT*FT",cregl))

RT*FT effect plot

1400 1600 1800 2000

T R R R
FT = 3000 FT = 3500
Bl [ 4es05
Bl [ 2e+05
Bl [ oe+00
Bl [ -2e+05
: - e
c FT = 1600 FT = 2100 FT = 2600
s
4e+05 | S
2405 -| > S
— z.
= -
0e+00 ~ - r
20405 r
——_y —
1400 1600 1800 2000 1400 1600 1800 2000

RT

127 /264



Continuous Data

Relations between Continuous Variables

Linear Regression: Continuous interactions

cregl <- 1lm(FTnew ~ RT*FT,data=dat)
plot(effect ("RT*FT",cregl),lines=1list(multilines=TRUE))
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Continuous Data Relations between Continuous Variables

Linear Regression: Continuous interactions

creg2 <- 1lm(FTnew ~ FT*RT,data=dat)
plot(effect ("FT*RT",creg2),lines=1list(multilines=TRUE))
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3D-Plots
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Continuous Data Relations between Continuous Variables

3D Scatter Plots

@ Very similar to the usual Scatter Plot, just with a "second x-axis”
@ Option 1: The scatterplot3d package
@ Load the package

install.packages("scatterplot3d")
load(scatterplot3d)
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Continuous Data Relations between Continuous Variables

3D Scatter Plots

scatterplot3d(x=dat$RT,y=dat$FT,z=dat$FTnew)

dat$FTnew

3500

dat$FT

)
£ T ° 3000

2500
2000

1500

—1le+05 0e+00 1e+05 2e+05 3e+05 4e+05 b5e+05 6e+05

1200 1400 1600 1800 2000 2200

dat$RT
132 /264



Continuous Data Relations between Continuous Variables

3D Scatter Plots: Customize

scatterplot3d(x=dat$RT,y=dat$FT,z=dat$FTnew,

angle=120)

o
o B
o oo
o 9
2
$
3
0
8
2
&
8
0
8
9
&
<
I
s 3
g 2
i
- 8 &
L o I}
& 3500 §
<] "
S 8
3000 e
2500 3
3
2000 8
"
8
1500 3
1200 1400 1600 1800 2000 22007
dat$RT

133 /264



Continuous Data Relations between Continuous Variables

3D Scatter Plots: Customize

colors <- c("red","blue","green")

colors <- colors[as.numeric(dat$condition)]
scatterplot3d(x=dat$RT,y=dat$FT,z=dat$FTnew,
angle=120,color=colors,pch=20)
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Continuous Data Relations between Continuous Variables

3D Scatter Plots: Customize

colors <- c("red","blue","green")

colors <- colors[as.numeric(dat$condition)]
scatterplot3d(x=dat$RT,y=dat$FT,z=dat$FTnew,angle=120,
color=colors,pch=20)

legend("left", legend = levels(dat$condition),

title="condition", col=c("red","blue","green"), pch=20)
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Continuous Data Relations between Continuous Variables

3D Scatter Plots: Regression Plane

@ (Does not work with interaction terms)
s3d <- scatterplot3d(x=dat$RT,y=dat$FT,z=dat$FTnew,
angle=120,pch=20,color="grey")
reg3d <- 1m(FTnew ~ RT + FT,data=dat)
s3d$plane3d(reg3d)
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Continuous Data Relations between Continuous Variables

3D Scatter Plots: Customize Regression Plane

@ (Does not work with interaction terms)
s3d <- scatterplot3d(x=dat$RT,y=dat$FT,z=dat$FTnew,
angle=120,pch=20,color="grey")
reg3d <- 1m(FTnew ~ RT + FT,data=dat)
s3d$plane3d(regdd,lty=1,
draw_polygon=T,polygon_args=list (col=rgb(1,0,0,0.5)))
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Continuous Data Relations between Continuous Variables

3D Scatter Plots

@ For a tutorial on 3D Scatter plots, see
http://www.sthda.com/english/wiki/
scatterplot3d-3d-graphics-r-software-and-data-visualization
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Continuous Data Relations between Continuous Variables

3D Scatter Plots

@ Option 2: The lattice package

o Load the package (we have installed it before):
library(lattice)
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Continuous Data Relations between Continuous Variables

3D Scatter Plots

cloud(FTnew ~ RT + FT,data=dat)

FTnew
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Continuous Data Relations between Continuous Variables

3D Scatter Plots: Customize

cloud(FTnew ~ RT + FT,data=dat)

FTnew
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Continuous Data Relations between Continuous Variables

3D Scatter Plots: Customize

colors <- c("red","blue","green")
colors <- colors[as.numeric(dat$condition)]
cloud(FTnew ~ RT + FT,

data=dat,col=colors,scales=1list(arrows=F),pch=20)

1400 RT
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Continuous Data Relations between Continuous Variables

3D Scatter Plots: Customize

cloud(FTnew ~ RT + FT,
data=dat,group=condition,scales=1list (arrows=F) ,pch=20)
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Continuous Data Relations between Continuous Variables

3D Scatter Plots: Customize

@ For a third option using the packages plot3D and plot3Drgl, see
this tutorial:

http://www.sthda.com/english/wiki/
impressive-package-for-3d-and-4d-graph-r-software-and-data-visualization
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Continuous Data Relations between Continuous Variables

Going fancy: The rgl package

o Install the rgl package:
install.packages("rgl")
library(rgl)
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Continuous Data Relations between Continuous Variables

Going fancy: The rgl package

o Install the rgl package:
install.packages("rgl")
library(rgl)
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Continuous Data

3D Scatter Plots: rgl

Relations between Continuous Variables

plot3d(x=dat$RT,y=dat$FT,z=dat$FTnew)
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Continuous Data

3D Scatter Plots: rgl

Relations between Continuous Variables

plot3d(x=dat$RT,y=dat$FT,z=dat$FTnew)
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Continuous Data

3D Scatter Plots: rgl

Relations between Continuous Variables

colors <- c("red","blue","green")

colors <- colors[as.numeric(dat$condition)]
plot3d(x=dat$RT,y=dat$FT,z=dat$FTnew,col=colors)
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Continuous Data Relations between Continuous Variables

3D Scatter Plots: rgl animation

colors <- c("red","blue","green")
colors <- colors[as.numeric(dat$condition)]
plot3d(x=dat$RT,y=dat$FT,z=dat$FTnew,col=colors)

play3d(spin3d(), duration=12)
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Continuous Data Relations between Continuous Variables

rgl plots: Regression Plane

plot3d(x=dat$RT,y=dat$FT,z=dat$FTnew,col="red")
reg3d <- 1m(FTnew ~ RT + FT,data=dat)

coefs <- coef (reg3d)

a <- coefs["RT"]

b <- coefs["FT"]

c <- -1

d <- coefs["(Intercept)"]

planes3d(a, b, ¢, d, alpha=0.5,col="red")

@ Use ¢ <- -1 for every data set
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Continuous Data

: Regression Plane

Relations between Continuous Variables
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Continuous Data Relations between Continuous Variables

rgl plots: Regression "Plane” with interaction

plot3d(x=dat$RT,y=dat$FT,z=dat$FTnew,col="red")
reg3d2 <- 1lm(FTnew ~ RT#FT,data=dat)

grd <- expand.grid(RT=sort(unique(dat$RT)),
FT=sort (unique(dat$FT)))

grd$pred <- predict(reg3d2, newdata=grd)

persp3d(x=unique (grd$RT), y=unique(grd$FT),
z=matrix(grd$pred,length(unique (grd$RT)) ,length(unique (grd$¥T))),

add=TRUE, col="red",alpha=.7)
There is a function calles persp to create surface plots as "normal”,

static plots, but | find the rgl version simpler (can easily be added to
a Scatter Plot)
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Continuous Data Relations between Continuous Variables
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Continuous Data Relations between Continuous Variables

rgl plots: Regression "Plane” with interaction

@ By combining previous approaches, we could also plot interaction
planes by condition

@ Use the commands plot3d, points3d and persp3d in combination
with dat [dat$condition == 1,] and so on

@ Due to the amount of coding involved, this will be omitted from this
course
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Continuous Data Relations between Continuous Variables

rgl plots: Surface Plots

@ Difference between Scatter Plots and Surface Plots: Surface Plots
need exactly one value of z for each value of x and y
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Continuous Data Relations between Continuous Variables

rgl plots: Surface Plots

@ Difference between Scatter Plots and Surface Plots: Surface Plots
need exactly one value of z for each value of x and y

@ They are plots of functions
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Continuous Data Relations between Continuous Variables

rgl plots: Surface Plots

@ Difference between Scatter Plots and Surface Plots: Surface Plots
need exactly one value of z for each value of x and y

@ They are plots of functions

@ Other examples: Histograms, Regression Lines
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Continuous Data Relations between Continuous Variables

rgl plots: Surface Plots

@ Another example: Load the data set volcano:

data(volcano)
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Continuous Data Relations between Continuous Variables

rgl plots: Surface Plots

@ Plot this matrix as a surface plot:
persp3d(x=1:nrow(volcano) ,y=1:ncol(volcano), z=volcano)

@ nrow(volcano) gives the number of rows of this matrix,
ncol(volcano) gives the number of columns

@ 1:nrow(volcano) gives all integer values from 1 to the number of
rows
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Continuous Data Relations between Continuous Variables

rgl plots: Surface Plots
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Continuous Data Relations between Continuous Variables

rgl plots: Surface Plots

@ Use terrain colors:
zlim <- range(volcano) zlen <- zlim[2] - zlim[1] + 1 colors
<- terrain.colors(zlen,alpha=0) col2 <-

colors[volcano-min(volcano)]

@ We have now created a color palette! This is actually very similar to
something like cols = c("red","blue","green")

@ We will have a closer look at color palettes later

160/ 264



Continuous Data Relations between Continuous Variables

rgl plots: Surface Plots

persp3d(x=1:nrow(volcano),y=1:ncol(volcano),
z=volcano,col=col?2)
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Continuous Data Relations between Continuous Variables

rgl plots: Surface Plots

@ So why exactly have we started plotting volcanoes now?
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Continuous Data Relations between Continuous Variables

Surface Plots and Continuous Int

RT*FT effect plot
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Continuous Data Relations between Continuous Variables

Surface Plots and Heat Maps

Color Key
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Continuous Data Relations between Continuous Variables

Heat Maps

Color Key Color Key
100 160 100 160
Vale Ve

Color Key Color Key

100 160 100 160
Value

165 / 264



Continuous Data Relations between Continuous Variables

Heat Maps: Common applications

e EEG frequency bands
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Continuous Data Relations between Continuous Variables

Heat Maps: Common applications

@ Speech frequency bands

Frequency (Hz)

Time (sec.)
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Continuous Data Relations between Continuous Variables

Heat Maps: Common applications

@ Correlation Matrices between many different variables

S ELGIS
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Continuous Data Relations between Continuous Variables

Heat Maps

e Standard R contains a heatmap() function

@ But heatmap.2(), included in the gplots package, comes with more
options

@ Load the package

install.packages("gplots")
library(gplots)
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Relations between Continuous Variables

Continuous Data

Heat Maps

@ This is not really what we want:
e Factor-separating lines in the plot

e Rows and columns are clustered (as indicated by dendrograms at the
side) and re-ordered

o (This re-ordering is useful to plot correlation clusters)
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Continuous Data Relations between Continuous Variables

Heat Maps

heatmap.2(volcano,trace="none" ,Rowv=F)
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Continuous Data Relations between Continuous Variables

Heat Maps

heatmap.2(volcano,trace="none" ,Rowv=F,Colv=F)
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Continuous Data Relations between Continuous Variables

Heat Maps: Change Color

heatmap.2(volcano,trace="none" ,Rowv=F,Colv=F,

col="terrain.colors")
Color Key
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100 160
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Continuous Data Relations between Continuous Variables

Heat Maps: Erase everything but the plot

heatmap.2(volcano,trace="none" ,Rowv=F,Colv=F,

col="terrain.colors")
Color Key
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100 160
Value
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Continuous Data Relations between Continuous Variables

Heat Maps: Erase everything but the plot

@ The heatmap.2 function comes with many, many options specifying
e The heatmap itself
e The dendograms
e The axes
e The legend
o The general plot

@ To get an overview, call the help function:
?heatmap.2
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Continuous Data Relations between Continuous Variables

Heat Maps: Multiple Regression

@ Back to our original data set:

heatregl <- 1lm(FTnew ~ RT + FT,data=dat)

grd <- expand.grid(RT=sort(unique(dat$RT)),
FT=sort (unique (dat$FT)))

grd$pred <- predict(heatregl, newdata=grd)
grd2 <- xtabs(pred ~ FT + RT,grd)
heatmap.2(grd2,Rowv=F,Colv=F,trace="none")

177/ 264



Continuous Data Relations between Continuous Variables

Heat Maps: Multiple Regression
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Continuous Data Relations between Continuous Variables

Heat Maps: Multiple Regression

@ Workaround for sensible non-factorial axes

heatregl <- 1m(FTnew ~ RT + FT,data=dat)

grd <- expand.grid(RT=sort(unique(dat$RT)),
FT=sort (unique (dat$FT)))

grd$pred <- round(predict(heatregl, newdata=grd),0)

grd2 <- xtabs(pred ~ FT + RT,grd)

heatrows <- rep("",300)

heatrows[seq(1,300,40)] <- rownames(grd2) [seq(1,300,40)]
heatcols <- rep("",300)

heatcols[seq(1,300,40)] <- colnames(grd2) [seq(1,300,40)]

heatmap.2(grd2,Rowv=F,Colv=F,trace="none",
labRow=heatrows,labCol=heatcols,srtCol=0,

xlab="RT",ylab="FT")
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Continuous Data Relations between Continuous Variables

Heat Maps: Multiple Regression
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Continuous Data Relations between Continuous Variables

Heat Maps: Multiple Regression

@ Make the y-axis increasing instead of decreasing
heatregl <- 1lm(FTnew ~ RT + FT,data=dat)

grd <- expand.grid(RT=sort(unique(dat$RT)),
FT=sort (unique (dat$FT)))

grd$pred <- round(predict(heatregl, newdata=grd),0)

grd2 <- xtabs(pred ~ FT + RT,grd)

grd2 <- grd2[order(rownames(grd2),decreasing=T),]
heatrows <- rep("",300)

heatrows[seq(1,300,40)] <- rownames(grd2) [seq(1,300,40)]
heatcols <- rep("",300)

heatcols[seq(1,300,40)] <- colnames(grd2) [seq(1,300,40)]

heatmap.2(grd2,Rowv=F,Colv=F,trace="none",
labRow=heatrows,labCol=heatcols,srtCol=0,
xlab="RT",ylab="FT")
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Continuous Data Relations between Continuous Variables

Heat Maps: Multiple Regression
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Continuous Data Relations between Continuous Variables

Heat Maps: Multiple Regression
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Continuous Data Relations between Continuous Variables

Heat Maps: Continuous interactions

@ Just change the regression model: + to *

heatregl <- 1lm(FTnew ~ RT * FT,data=dat)

grd <- expand.grid(RT=sort (unique(dat$RT)),
FT=sort (unique (dat$FT)))

grd$pred <- round(predict(heatregl, newdata=grd),0)

grd2 <- xtabs(pred ~ FT + RT,grd)

grd2 <- grd2[order(rownames(grd2),decreasing=T),]
heatrows <- rep("",300)

heatrows[seq(1,300,40)] <- rownames(grd2) [seq(1,300,40)]
heatcols <- rep("",300)

heatcols[seq(1,300,40)] <- colnames(grd2) [seq(1,300,40)]

heatmap.2(grd2,Rowv=F,Colv=F,trace="none",
labRow=heatrows,labCol=heatcols,srtCol=0,

xlab="RT",ylab="FT")
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Continuous Data Relations between Continuous Variables

Heat Maps: Continuous interactions
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Continuous Data
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Relations between Continuous Variables

Heat Maps: Continuous interactions
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Continuous Data Relations between Continuous Variables

Heat Maps: Multiple Regression

@ All these heat maps also work if one or both predictor variables are
factors
heatreg2 <- 1m(FT ~ RT*condition,data=dat)

grd <- expand.grid(RT=sort (unique(dat$RT)),
condition=levels(dat$condition))

grd$pred <- round(predict(heatreg2, newdata=grd),0)

grd2 <- xtabs(pred ~ condition + RT,grd)

heatrows <- rep("",300)

heatcols[seq(1,300,40)] <- colnames(grd2) [seq(1,300,40)]
heatmap.2(grd2,Rowv=F,Colv=F,trace="none",

labCol = heatcols,xlab="RT",main="FT by RT and condition")
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Continuous Data

Heat Maps: Multiple Regression
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Continuous Data Relations between Continuous Variables

Heat Maps: Multiple Regression
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Continuous Data Relations between Continuous Variables

Heat Maps and Surface Plots: The mgcv package

@ The mgcv package makes these plots way easier

@ Load the package:
library (mgcv)
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Continuous Data

Relations between Continuous Variables

Heat Maps and Surface Plots: The mgcv package

nlintl <- gam(FTnew ~ RT + FT ,data=dat)
vis.gam(nlint1)
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Continuous Data Relations between Continuous Variables

Heat Maps and Surface Plots: The mgcv package

nlintl <- gam(FTnew ~ RT + FT ,data=dat)
vis.gam(nlintl,plot.type="contour")
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Continuous Data Relations between Continuous Variables

Heat Maps and Surface Plots: The mgcv package

nlint2 <- gam(FTnew ~ RT * FT ,data=dat)
vis.gam(nlint2,plot.type="contour")
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Continuous Data

Relations between Continuous Variables

Heat Maps and Surface Plots: The mgcv package

o With the mgcv package, we can even plot non-linear interactions:

nlint3 <- gam(FTnew ~ te(RT,FT) ,data=dat)
vis.gam(nlint3)
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Continuous Data Relations between Continuous Variables

Heat Maps and Surface Plots: The mgcv package

nlint3 <- gam(FTnew ~ te(RT,FT) ,data=dat)
vis.gam(nlint3,plot.type="contour")
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Continuous Data Relations between Continuous Variables

Heat Maps and Surface Plots: The mgcv package

@ Alternative option: plot() on the gam() object nlint3 <-
gam(FTnew ~ te(RT,FT) ,data=dat)
plot(nlint3,scheme=1)
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Continuous Data Relations between Continuous Variables

Heat Maps and Surface Plots: The mgcv package

nlint3 <- gam(FTnew ~ te(RT,FT) ,data=dat)
plot(nlint3,scheme=2)

te(RT,FT,10.4)
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@ Call the help function ?plot.gam() for more options 198264



Continuous Data Relations between Continuous Variables

Multiple Regression: More complex models

@ Sometimes, regression models include a higher number of terms, such
as
RT ~ predl*pred2 + pred2*pred3 + pred4 + predb

@ All of the plotting functions presented can handle these cases and
"pick out” the effects of interest, for example by

e Specifying term in the effect () function
e Specifying view in the vis.gam() function
e Specifying select in the plot () function for gam() objects
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Plotting Data vs. Analyses

Plotting Data vs. Analyses
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Plotting Data vs. Analyses

Plotting Data vs. Analyses

@ In some plots, we are plotting descriptive summaries of the data
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Plotting Data vs. Analyses

Plotting Data vs. Analyses

@ In some plots, we are plotting the results of analyses
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Plotting Data vs. Analyses

Plotting Data vs. Analyses
@ In some plots, we are plotting both

te(RT,FT,10.4)
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Plotting Data vs. Analyses
Plotting Data vs. Analyses

@ Every plot should serve a purpose, so you have to choose between
these options in every case
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Plotting Data vs. Analyses

Plotting Data vs. Analyses

@ Every plot should serve a purpose, so you have to choose between
these options in every case

@ Although plotting both data and analyses seems the overall best way,
the data sometimes makes this difficult:
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Plotting Data vs. Analyses

Plotting Data vs. Analyses

RT effect plot
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@ Always tell your reader/audience what they are seeing
@ This is what figure captions are for
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Plotting Data vs. Analyses
Error Bars

@ A prime example for this issue are standard factorial designs with a
continuous dependent variable (for example 2x2 design for RTs)

o Let's look at different ways to plot this
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Plotting Data vs. Analyses
Error Bars

@ Line Plot of means:
bargraph.CI(x.factor=dat$condition,group=dat$time,
response=dat$RT,ylim=c(1400,2000) ,col=c("blue", "magenta"))
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Plotting Data vs. Analyses
Error Bars

@ Line Plot of means (aggregated data):
agg <- aggregate(RT ~ condition + time + participant,
data = dat,mean)
lineplot.CI(x.factor=agg$condition,group=agg$time,
response=agg$RT,ylim=c (1400,2000) ,col=c("blue", "magenta"))
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Plotting Data vs. Analyses

Error Bars

@ Line Plot of means (raw vs. aggregated data):
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Plotting Data vs. Analyses
Error Bars

@ Line Plot of means (data aggregated over items):
agg?2 <- aggregate(RT ~ condition + time + item,
data = dat,mean)
lineplot.CI(x.factor=agg2$condition,group=agg2$time,
response=agg2$RT,ylim=c (1400,2000) ,col=c("blue", "magenta"))
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Plotting Data vs. Analyses

Error Bars

@ Line Plot of means (aggregated over participants vs. items):

- Tl

i - T1
— T2

— T2

fun of response
1400 1500 1600 1700 1800 1900 2000
|

fun of response
1400 1500 1600 1700 1800 1900 2000
1

1 2 3 1 2 3

x.factor x.factor

211/ 264



Plotting Data vs. Analyses
Error Bars

@ Line Plot of model predictions:
modell <- lmer(RT ~ condition*time +
(condition*time|participant), data=dat)
plot(effect("condition*time" ,modell),lines=1list (multiline=TRUE)
confint=list(style="bars"))
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Plotting Data vs. Analyses

Error Bars

@ Line Plot of means (raw data vs. model predictions):

condition*time effect plot
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Plotting Data vs. Analyses
Error Bars

@ In this case, the plots are all very similar, but they display different
things!

@ Be clear about that
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Plotting Data vs. Analyses
Error Bars

o For repeated-measures designs (one participant/item in more than
one condition), adjustments to the error bars have been suggested:

@ See for example

Loftus, G. R., & Masson, M. E. (1994). Using confidence intervals in
within-subject designs. Psychonomic Bulletin & Review, 1, 476-490.

Cousineau, D. (2005). Confidence intervals in within-subject designs:
A simpler solution to Loftus and Masson's method. Tutorials in
Quantitative Methods for Psychology, 1, 42-45.
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Stepwise Plotting

Stepwise Plotting
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Stepwise Plotting
Stepwise Plotting

@ Up to now, most plots were handled in a single command, and then
adjusted in the options

@ Let's check the alternative way: Starting from an empty plot and add
everything piece by piece

o Takes longer, but gives most control
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Stepwise Plotting

Stepwise Plotting: Line Plot with Error Bars

e Empty Plot
plot(0,type="n",axes=F,x1lim=c(0.5,3.5),ylim=c(1400,2000),
xlab="Condition",ylab="RT")

@ x1im and ylim options are very important here: They define the
window to be plotted

RT

Condition
218 /264



Stepwise Plotting
Stepwise Plotting: Line Plot with Error Bars

o Add the y-axis:

axis(2)

RT

1400 1500 1600 1700 1800 1900 2000
|

Condition
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Stepwise Plotting
Stepwise Plotting: Line Plot with Error Bars

@ Add the x-axis:

axis(1l,at=1:3,labels=c("1","2","3"))

RT
1400 1500 1600 1700 1800 1900 2000

Condition
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Stepwise Plotting
Stepwise Plotting: Line Plot with Error Bars

o Add a box:

box ()

RT
1400 1500 1600 1700 1800 1900 2000
1

Condition
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Stepwise Plotting
Stepwise Plotting: Line Plot with Error Bars

@ Add points for T1:

means <- aggregate(RT condition + time,data=dat,mean)
e <- .05

points(x=(1:3 - e),y=means[means$time == "T1",]$RT,
pch=16,col="blue")

RT
1400 1500 1600 1700 1800 1900 2000
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Stepwise Plotting
Stepwise Plotting: Line Plot with Error Bars

@ Add points for T2:

points(x=(1:3 + e),y=means[means$time == "T2",]$RT,
pch=16,col="magenta")

RT
1400 1500 1600 1700 1800 1900 2000

Condition
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Stepwise Plotting
Stepwise Plotting: Line Plot with Error Bars

@ Add lines for T1:

lines(x=(1:3 - e),y=means[means$time == "T1",]$RT,
lty=2,col="blue")

RT
1400 1500 1600 1700 1800 1900 2000

Condition
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Stepwise Plotting
Stepwise Plotting: Line Plot with Error Bars

@ Add lines for T1:

lines(x=(1:3 - e),y=means[means$time == "T1",]$RT,
lty=2,col="blue")

RT
1400 1500 1600 1700 1800 1900 2000

Condition
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Stepwise Plotting
Stepwise Plotting: Line Plot with Error Bars

@ Add lines for T2:

lines(x=(1:3 + e),y=means[means$time == "T2",]$RT,
1ty=2,col="magenta")

RT
1400 1500 1600 1700 1800 1900 2000

Condition
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Stepwise Plotting

Stepwise Plotting: Line Plot with Error Bars

e Compute standard errors (function se is part of the sciplot
package) and attach them to the object containing the means:

means$se <- aggregate(RT ~ condition + time,data=dat,se)$RT

o Compute M + SE and M — SE:

means$seplus <- means$RT + means$se
means$seminus <- means$RT - means$se
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Stepwise Plotting
Stepwise Plotting: Line Plot with Error Bars

@ Draw error bars as arrows:

arrows (x0=(1:3-¢e) ,x1=(1:3-¢e),
yO=means [means$time == "T1",]J$RT,
yl=means [means$time == "T1",]$seplus,
col="blue",angle=90,length=.1)
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Stepwise Plotting
Stepwise Plotting: Line Plot with Error Bars

@ Draw error bars as arrows:

arrows (x0=(1:3-¢e) ,x1=(1:3-¢e),

yO=means [means$time == "T1",]J$RT,
yl=means [means$time == "T1",]$seminus,
col="blue",angle=90,length=.1)
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Stepwise Plotting
Stepwise Plotting: Line Plot with Error Bars

@ Draw error bars as arrows:

arrows (x0=(1:3+e) ,x1=(1:3+e),
yO=means [means$time == "T2",]$RT,
yl=means [means$time == "T2",]$seplus,
col="magenta",angle=90,length=.1)
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Stepwise Plotting
Stepwise Plotting: Line Plot with Error Bars

@ Draw error bars as arrows:

arrows (x0=(1:3+e) ,x1=(1:3+e),

yO=means [means$time == "T2",]$RT,
yl=means [means$time == "T2",]$seminus,
col="magenta",angle=90,length=.1)
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Stepwise Plotting
Stepwise Plotting: Line Plot with Error Bars

o Add a legend:
legend("topleft",pch=16,1ty=2,
col=c("blue","magenta"),legend = c("T1","T2"),title = "Time")
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Stepwise Plotting

Stepwise Plotting: Other graphical elements

segments ()
abline()
rect ()
polygon()

Line segments between pairs of points
A line with slope and intercept
Rectangles (can be used for Bar Plots)
Polygons
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Controlling Graphical Parameters

Controlling Graphical Parameters
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Controlling Graphical Parameters
Controlling Graphical Parameters

@ Graphical parameters are adjusted globally, using the par() function
@ They will affect every subsequent plot

@ To reset par() to "factory settings”, use the function dev.off ()
(without argument), which will close the plotting device
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Controlling Graphical Parameters
Controlling Graphical Parameters

@ There are many, many graphical parameters that can be changed
@ See 7par

o We will only deal with the most common ones here

236 / 264



Controlling Graphical Parameters

Controlling Graphical Parameters: Margins

. Line 3
Margins Line 2
par{mar=c(b,l,1,r)) Ling 1
Line 0
=
-
> Plot
=
o
T T T T T T
0 2 4 6 8 10
X
Line 0 .
Lins 1 Outer Margin Area
Line 2 par{oma=c(b,l.t,r}}
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Controlling Graphical Parameters

@ par(oma=c(1,2,3,4))
plot(dat$RT,dat$FT)
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Controlling Graphical Parameters

Controlling Graphical Parameters: Margins

@ par (mar=c(1,2,3,4))
plot (dat$RT,dat$FT)
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Controlling Graphical Parameters

Controlling Graphical Parameters: Margins

@ par(mai=c(0,1,2,3))
plot (dat$RT,dat$FT)
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Controlling Graphical Parameters

Controlling Graphical Parameters: Character Size

@ par(cex=.5)
plot (dat$RT,dat$FT)
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Controlling Graphical Parameters

o par(mfrow=c(2,3))

for (i

dat$FT

datsFT

in 1:6)plot(dat$RT
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Controlling Graphical Parameters

Multiple Graphs: More fine-tuning

@ Define the Frame:

zones=matrix(c(2,0,1,3), ncol=2, byrow=TRUE)

layout (zones, widths=c(.75,.25), heights=c(.25,.75))
par(oma=c(1,1,1,1))

par (mar=c(1,1,1,1))

@ Inspect zones

zones
[,11 [,2]

(1,] 0
[2,] 1 3
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Controlling Graphical Parameters

Multiple Graphs: More fine-tuning

@ Prepare two histograms:

xhist <- hist(dat$RT,plot=FALSE)
yhist <- hist(dat$FT,plot=FALSE)
top <- max(c(xhist$counts, yhist$counts))
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Controlling Graphical Parameters

Multiple Graphs: More fine-tuning

@ Plot all three graphs:
plot(dat$RT,dat$FT)
barplot(xhist$counts, axes=FALSE, ylim=c(0, top), space=0)
barplot(yhist$counts, axes=FALSE, xlim=c(0, top), space=0,
horiz=TRUE)
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Colors

Colors
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Colors
Colors

@ As we have seen throughout the course, there are a lot of standard
colors that can be accessed by name

@ For an overview, see
http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf
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Colors
Colors

@ Additional colors can be customized using the rgb() function

rgb(1,1,1)

@O

rgb(0,1,1)
rgbh(1,0,1)
rgb(1,1,0)
rgb(0,0,1)
rgb(0,1,0)
rgb(1,0,0)

rgh(0,0,0)

000000

@ use rgb(...,maxValue=255) for the standard 255 scale
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Colors

Colors

@ Use the alpha option to adjust parameters

rgb(1,0,0,alpha=0) O
rgb(1,0,0,alpha=.25) O
rgb(1,0,0,alpha=.5) Q
rgb(1,0,0,alpha=.75) .
rgb(1,0,0,alpha=1) .
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Colors

Colors

@ Use a pre-defined color palette:
cols <- rainbow(100)

cols[100]
cols[90]
cols[80]
cols[70]
cols[60]
cols[50]
cols[40]
cols[30]
cols[20]
cols[10]

cols[1]

00000000000
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Colors

Colors

@ Use a pre-defined color palette:
cols <- terrain.colors(100)

cols[100]
cols[90]
cols[80]
cols[70]
cols[60]
cols[50]
cols[40]
cols[30]
cols[20]
cols[10]

cols[1]

00000000000
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Colors

Colors

@ Use a pre-defined color palette:
cols <- topo.colors(100)

cols[100]
cols[90]
cols[80]
cols[70]
cols[60]
cols[50]
cols[40]
cols[30]
cols[20]

cols[10]

00000000000

cols[1]
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Colors

Colors

@ Use a pre-defined color palette:
cols <- heat.colors(100)

cols[100]
cols[90]
cols[80]
cols[70]
cols[60]
cols[50]
cols[40]
cols[30]
cols[20]
cols[10]

cols[1]

0000000 OCO0O0
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Colors

Colors

@ Use a pre-defined color palette:
cols <- cm.colors(100)

cols[100]
cols[90]
cols[80]
cols[70]
cols[60]
cols[50]
cols[40]
cols[30]
cols[20]
cols[10]

cols[1]

CO0O00OOOO000®
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Colors

Colors

@ Create your own color palette:
cols <- colorRampPalette(c("red","white","green")) (100)

cols[100]
cols[90]
cols[80]
cols[70]
cols[60]
cols[50]
cols[40]
cols[30]
cols[20]

cols[10]

00000000000

cols[1]
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Colors
Colors

e For more information (also on the RColorBrewer package), see
https://www.stat.ubc.ca/~jenny/STAT545A/blockl4_colors.html
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Exporting Plots

Exporting Plots
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Exporting Plots

Exporting Plots

@ In RStudio, plots can be exported by clicking on " Export”
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Exporting Plots
Exporting Plots

@ Plots can also be exported using R commands:

pdf ("C:/User/Documents/myplot.pdf")
plot(dat$RT,dat$FT)
dev.off ()

o Everything between opening the device with pdf () and closing it with
dev.off () is exported
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Exporting Plots
Exporting Plots

@ Adjusting the size of the plot:

pdf ("C:/User/Documents/myplot.pdf",width=5,height=5)
plot(dat$RT,dat$FT)
dev.off ()

@ The size of characters and symbols will depend on the figure size
(smaller symbols with larger sizes)
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Exporting Plots
Exporting Plots

@ There are many other options that can be specified while exporting:
font style, point size, background and foreground color, ...

@ And also other file formats:

Raster images
o png("myplot.png")

o jpeg("myplot.jpeg")
e bmp("myplot.bmp")

Vector Graphics
e pdf ("myplot.pdf")

e postscript("myplot.ps")

o win.metafile("myplot.wmf")
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Exporting rgl graphs

o Rotatable 3D-Plots created with the rgl package are exported as
follows:

o Create the rgl graph
data(volcano)
persp3d(x=1:nrow(volcano) ,y=1:ncol(volcano) ,z=volcano)

e Turn them to the position you want to export (can also be done using
commands, see ?7view3d)

e Call rgl.snapshot(filename="snapshot.png") or
rgl.postscript (filename="rgl2.pdf",fmt="pdf") (also supports
ps, eps, tex, svg, pgf)
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Exporting rgl graphs

@ You can also export animations as .gifs, using commands such as
movie3d(spin3d() ,movie="mygif-",duration=12,dir=getwd())

@ This requires the package magick to be installed
@ To also export all the individual .png files used to create the .gif, use

movie3d(spin3d() ,movie="mygif-",duration=12,
dir=getwd () ,clean=F)
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