R Course: Data Visualization J

Fritz Guinther

1/264

Note to myself: Activate all Animations before loading (search for
multiinclude)

2/264

O R - Some Basics

© Discrete Data
@ Frequencies and Distributions

© Continuous Data
@ Frequencies and Distributions
@ Relations between Continuous Variables

@ Plotting Data vs. Analyses

© Stepwise Plotting

@ Controlling Graphical Parameters
@ Exporting Plots

© Colors

3/264

@ Most of this course will focus on the base R plotting functions
@ Other options are the packages lattice and ggplot2

@ We can have a look at these later

4/264

R - Some Basics
R - Some basics

@ Set your working directory with
setwd("C:/Users/fritz.guenther/Documents/R_course")

@ Check your current working directory with
getwd ()

@ Check the files in your current working directory with
dir()

5264

R - Some Basics
R - Some basics

@ Read a text table (here called datfile.txt) in your current working
directory with
read.table("datfile.txt")

@ Read a text table in some other directory with
read.table("C:/otherdir/datfile.txt")

@ Read a .csv file with
read.csv("datfile.csv")
or
read.csv2("datfile.csv") ,
depending on the .csv format (, vs. ;)

6/264

R - Some Basics
R - Some basics

@ Save the data in a variable
dat <- read.table("datfile.txt")

@ Inspect the data
View(dat)
head(dat)

o Look at the data structure
str(dat)
summary (dat)
names (dat)

7/264

R - Some Basics
R - Some basics

e Extract a column by name (here: the column named freq)
dat$freq
dat[,"freq"]

e Extract a column by position (here: the second column)
dat[,2]

e Extract a row by position (here: the third row)
dat[3,]

8 /264

R - Some Basics
R - Some basics

@ If you don’t know how a function works, use
7func
(with func being the name of the function)

9/264

Discrete Data Frequencies and Distributions

Discrete Data:
Frequencies and Distributions

10 /264

Discrete Data Frequencies and Distributions

Discrete Data

@ Discrete Data refers to cases where we have a finite, countable
number of possible values

e Examples: native language, Yes/No-answers, one of X different
sentence arrangements; strictly speaking, also error rates

@ In a sense, also rating scales (for example rating 1-5 or 1-7) are also
discrete data; however, these typically have ordinal structure

11/264

Discrete Data Frequencies and Distributions

Discrete Data

@ Our token data set: Sentence fragment arrangement

e Participants are given some sentence fragments (A, B, C) and have to
arrange their order

12 /264

Discrete Data Frequencies and Distributions

Read the Data

dat <- read.table("sentence_arrangement.txt", header=T)
@ header = T tells R that the first row contains the variable names

@ Table of the response patterns
table(dat$arrangement)

13 /264

Inspect the Data

Discrete Data Frequencies and Distributions

str(dat)

We have 3 conditions a 10 participants, as well as their response
patterns (arrangement)

condition is not a number, but an experimental factor. Therefore:
dat$condition <- as.factor(dat$condition)

We further have their response times (RT) — when they started
arranging the fragments — and their finishing times (FT) — when they
completed the arrangements

Within each condition, we have data for two different time points
(pre and post)

We also have participant answers whether the sentence is true

14 /264

Discrete Data Frequencies and Distributions

Bar plot of the response patterns

Rbarplot(table(dat$arrangement))

50
|

o |—|l—||—|’—‘

ABC ACB BAC BCA CAB CBA

15 /264

Discrete Data Frequencies and Distributions

Bar plot: Customizing

barplot(table(dat$arrangement),
xlab="response pattern",ylab="frequency")

frequency

150

100

50

|—|l—||—|’—‘

ABC ACB BAC BCA CAB

response pattern

CBA

16 /264

Discrete Data Frequencies and Distributions

R Basics

@ Strings in quotation marks ("red”) are characters

@ Strings without quotation marks (colors) are variable names (i.e.,
program code)

17 /264

Discrete Data Frequencies and Distributions

Bar plot: Customizing

barplot(table(dat$arrangement),
col="red")

150
J

100
|

50
|

o —---I

ABC ACB BAC BCA CAB CBA

18 /264

Discrete Data Frequencies and Distributions

Colors in R: Colors with names

http:
//research.stowers.org/mcm/efg/R/Color/Chart/ColorChart.pdf

19 /264

http://research.stowers.org/mcm/efg/R/Color/Chart/ColorChart.pdf
http://research.stowers.org/mcm/efg/R/Color/Chart/ColorChart.pdf

Discrete Data Frequencies and Distributions

Bar plot: Customizing

barplot(table(dat$arrangement),
horiz=T)

!

ABC ACB BAC BCA CAB CBA
o - —
=B

50 100 150

20/ 264

Discrete Data Frequencies and Distributions

Bar plot: Customizing

barplot(table(dat$arrangement),
space=5)

150
J

100
|

50
|

ABC ACB BAC BCA CAB CBA

21 /264

Discrete Data Frequencies and Distributions

Bar plot by condition

barplot(table(dat$arrangement,dat$condition))

100
|

80
|

60
|

40

20
|

22 /264

Discrete Data Frequencies and Distributions

Bar plot by condition: Customizing

barplot(table(dat$arrangement,dat$condition),
legend=T)

80
L

60
L

20
L

Look crappy, let's position the legend somewhere else

23 /264

Discrete Data Frequencies and Distributions

Bar plot by condition: Customizing

barplot(table(dat$arrangement,dat$condition),

legend=T,x1lim=c(0,6) ,args.legend=1ist (x=6))

100
|

60
|

40
|

BEEDODOO

CBA
CAB
BCA
BAC
ACB
ABC

24 /264

Discrete Data Frequencies and Distributions

R Basics

@ Create a vector of elements
colors <- c("black","red")
values <- c(0,6)

25 / 264

Discrete Data Frequencies and Distributions

Bar plot by condition: Customizing

@ More flexibility
len <- length(unique(dat$condition))
barplot(table(dat$arrangement,dat$condition),

legend=T,x1lim=c(0,len+3) ,args.legend=1list (x=len+3))

(=}
S -
—
O CBA
o O cAB
8 @ BCA
@ BAC
. @ ACB
3 m ABC
o |
<
o
N
o

1 2 3 26 /264

Discrete Data Frequencies and Distributions

Bar plot by condition: Customizing

len <- length(unique(dat$condition))
barplot(table(dat$arrangement,dat$condition),
legend=T,x1lim=c(0,len+3) ,args.legend=1list (x=len+3),

col="red")

o
S -
=1
B CBA
o | m CAB
o B BCA
B BAC
o B ACB
@] B ABC
o |
<
o |
«
o 4

27 /264

Discrete Data Frequencies and Distributions

Bar plot by condition: Customizing

len <- length(unique(dat$condition))
barplot(table(dat$arrangement,dat$condition),
legend=T,x1lim=c(0,len+3) ,args.legend=1list (x=len+3),

col=c("red","orange","yellow","green","blue","purple"))

o
S -
—
= CBA
o = CAB
@ @ BCA
O BAC
° @ ACB
@ ®m ABC
Q 4
<
o |
N
o -

28 /264

Discrete Data Frequencies and Distributions
Bar plot by condition: Customizing

len <- length(unique(dat$condition))
barplot(table(dat$arrangement,dat$condition),
legend=T,x1lim=c(0,len+4),
args.legend=1list(x=len+4,title="response pattern"),
col=c("red","orange","yellow","green","blue","purple"),

xlab="condition",ylab="frequency")

o - ili
1 2 3

condition 29 /264

100

response pattern
B CBA

H CAB

@ BCA

O BAC

(]

]

80
L

60
L

ACB
ABC

frequency

40
L

20
L

Discrete Data Frequencies and Distributions

Mosaic Plot

mosaicplot(table(dat$condition,dat$arrangement))

table(dat$condition, dat$arrangement)

1 2 3

ABC

H

-
J

!

30/264

Discrete Data Frequencies and Distributions

Mosaic Plot: Prettier

mosaicplot(table(dat$condition,dat$arrangement),
main="Mosaic Plot",las=1)

Mosaic Plot

ABC

e
ace [.]

BAC

BCA]

CBA

31/ 264

Discrete Data

Mosaic Plot: Customizing

Frequencies and Distributions

mosaicplot(table(dat$condition,dat$arrangement),

main="Mosaic Plot",

col=c("red","orange","yellow","green","blue", "purple"))

ABC

ACB
BAC
BCA
CAB

CBA

las=1,

Mosaic Plot

H

32/264

Discrete Data Frequencies and Distributions

Mosaic Plot: Turning it around

mosaicplot(table(dat$arrangement,dat$condition),
main="Mosaic Plot",las=2,
col=c("red","orange","yellow","green","blue", "purple"))

Mosaic Plot

| !
|

ABC
CBA

| I =cA
| I

] O I BAC

33/264

Discrete Data Frequencies and Distributions

Mosaic Plot

@ Mosaic Plots are nice for visualising multi-dimensional frequency data

@ Let's include the time (pre vs. post) first

34 /264

Discrete Data Frequencies and Distributions

Mosaic Plot: More Dimensions

@ Mosaic Plot including Time
mosaicplot(table(dat$time,dat$arrangement,dat$condition),

main="Mosaic Plot",las=2)

Mosaic Plot
s [
Q o < (o] no< o <
53] O o (1] Q o< @
< <o) O < 45200 O

-
!

I I
2 I I
I I

| 35/ 264

Discrete Data Frequencies and Distributions

Mosaic Plot: Customizing

@ mosaicplot(table(dat$time,dat$arrangement,dat$condition),
main="Mosaic Plot",las=2,col=TRUE)

Mosaic Plot

~
s

U(.)(g
<« O

{
[

CAB
CBA

36 /264

Discrete Data Frequencies and Distributions

Mosaic Plot: Customizing

@ mosaicplot(table(dat$time,dat$arrangement,dat$condition),
main="Mosaic Plot",las=2,

col=c("red","orange","yellow","green","blue", "purple"))

Mosaic Plot

I
| 4
I I
I
HEIRB
I 37/ 264

Discrete Data Frequencies and Distributions

Mosaic Plot: Customizing

@ mosaicplot(table(dat$time,dat$arrangement,dat$condition),
main="Mosaic Plot",las=2,

col=c("red","orange","yellow","green","blue", "purple"))

Mosaic Plot

I
| 4
I I
I
HEIRB
I 38/ 264

Discrete Data Frequencies and Distributions

Mosaic Plot: Customizing

@ mosaicplot(table(dat$time,dat$arrangement,dat$condition),
main="Mosaic Plot",las=2,cex=.4,
col=c("red","orange","yellow","green","blue", "purple"))

Mosaic Plot

o

Q
8
2

Ace

$83 8
| |

| |

| |

|

|

| 39 /264

3

Discrete Data Frequencies and Distributions

Mosaic Plot: Re-Order Variables

mosaicplot(table(dat$arrangement,dat$time,dat$condition),
main="Mosaic Plot",las=2,cex=.4,

col=c("red","orange","yellow","green","blue", "purple"))

Mosaic Plot

§§§
——
4
cre

40 /264

Discrete Data Frequencies and Distributions

Mosaic Plot: Re-Order Variables

mosaicplot(table(dat$arrangement,dat$condition,dat$time),
main="Mosaic Plot",las=1,

col=c("red","orange","yellow","green","blue", "purple"))
Mosaic Plot

2 3
T1 N T2 T1 T2 T1 T2

ABC

ACB
BAC |
BCA
cAB

]
|

|

I

[]

|

41 /264

Discrete Data Frequencies and Distributions

Mosaic Plot: Even more dimensions

mosaicplot(
table(dat$time,dat$condition,dat$true,datParrangement),

main="Mosaic Plot",las=1,cex=.6,col=T)
Mosaic Plot

42 /264

Continuous Data Frequencies and Distributions

Continuous (Metric) Data:
Frequencies and Distributions

43/ 264

Continuous Data Frequencies and Distributions

Continuous Data

@ Discrete Data refers to cases where we have an infinite,
non-countable number of possible values

@ Examples: response times, N400-amplitudes, gaze durations
@ In practice (but not from a theoretical point of view!), the line

between discrete and continuous data can become blurry: ratings on
a 1-100 scale, error rates computed from a large number of trials

44 /264

Continuous Data Frequencies and Distributions

Box Plot of response times

boxplot (dat$RT)
g | |
Q :
s | |
3
S
3
8 _ |
= E

45 /264

Continuous Data Frequencies and Distributions

Box Plot of response times

@ What can | see in a box plot?
@ Outer lines: minimum and maximum value
e Thick middle line: median (50% of values below this point)

@ Outer edges of the box: 1st and 3rd quartile (25% / 75% of values
below these points)

2000
I

1800
I

1600
I

1400
I

46 /264

Continuous Data Frequencies and Distributions

Box Plot: Turning it around

boxplot(dat$RT,horizontal=T)

1200 1400 1600 1800 2000 2200
47 / 264

Continuous Data Frequencies and Distributions

Box Plot by condition

boxplot (RT ~ condition,dat)

o
—°
1
o 1
S | .
S 1
I ;
o
o 7
S _| 1
@ —_— :
— ' '
! 1
! 1
: .
o I - e
o | '
© 1
- '
.
'’ 1
1
o 1
o _| .
<
3 T
i
1
-
T T T
1 2 3

48 /264

Continuous Data Frequencies and Distributions

R Basics

@ The ~ symbol ("tilde") is used in a formula object

@ Read

RT ~ condition
as "RT predicted by condition”

49 / 264

Continuous Data Frequencies and Distributions

Box Plot: Customizing

boxplot(RT ~ condition,dat,
col= c("red","orange","yellow"))

o
_o°
i
o
ISE
IS
&
°
o ‘
S | ‘
@ _— w
- ' :
. |
' -
o - . °
g7 ‘ E
@ ‘
- '
‘
‘
'
8 -
S |
3
3 '
'
—_
T T I
1 2 3

50 /264

Continuous Data Frequencies and Distributions

Histogram of response times

hist (dat$RT)

Histogram of dat$RT

Frequency
20 30 40 50 60
|]

10
|

[T T T T
1200 1400 1600 1800 2000

dat$RT

1
2200

51264

Continuous Data Frequencies and Distributions

Histogram and Box Plot

@ A box plot is a histogram " as seen from above”

T T T T T
1200 1400 1600 1800 2000 2200

Histogram of dat$RT

Frequency
0

T T T T 1
1200 1400 1600 1800 2000 2200

datsRT

52 /264

Continuous Data Frequencies and Distributions

Histogram: Customizing

hist(dat$RT,main="Histogram",xlab="Response Time", col="red")

Histogram

50
|

40

Frequency

20
|

[T T T T 1
1200 1400 1600 1800 2000 2200

Response Time
53 /264

Continuous Data Frequencies and Distributions

Histogram: Customizing

hist(dat$RT,main="Histogram",xlab="Response Time",
col="red" ,breaks=100)

Histogram

o _
—
o -

>

2

g © 7

3

o

o}

o

I
< -
~
o J

[T T T T 1
1200 1400 1600 1800 2000 2200

Response Time 54 /264

Continuous Data Frequencies and Distributions

Histogram: Customizing

@ Density instead of frequency
hist(dat$RT,main="Histogram",xlab="Response Time",
col="red",breaks=100,freq=F)

Histogram

[se}
o
8 T
o
N
2> 9o
£ S
c O
I3
o
P
o
S
o
o
o
8 -
o

I T T T T 1
1200 1400 1600 1800 2000 2200

Response Time 55 /264

Continuous Data Frequencies and Distributions

Kernel Density Plot

@ ("Smoothed Histograms")
plot(density(dat$RT))

density.default(x = dat$RT)

Density
0.0010 0.0015 0.0020
! ! !

0.0005
1

0.0000
1

T T T T T T
1200 1400 1600 1800 2000 2200

N =300 Bandwidth =62.06 56/ 264

Continuous Data Frequencies and Distributions

Kernel Density Plot: Customizing

plot(density(dat$RT),
main="Kernel density plot",xlab="Response Time",col="red")

Kernel density plot

0.0010 0.0015 0.0020
1 1 1

Density

0.0005
1

0.0000
1

T T T T T T
1200 1400 1600 1800 2000 2200

Response Time

57 /264

Continuous Data Frequencies and Distributions

Kernel Density Plot: Customizing

d <- density(dat$RT)
plot(d,main="Kernel density plot",xlab="Response Time")
polygon(d,col="red")

Kernel density plot

Density
0.0010 0.0015 0.0020
! ! !

0.0005
|

0.0000
|

T T T T T T
1200 1400 1600 1800 2000 2200

Response Time

58 /264

Continuous Data Frequencies and Distributions

Kernel Density Plot by condition

o First install the sm package
install.packages("sm")

library(sm)

@ If you don't know which functions a package includes, use
help(package="sm")

59 /264

Continuous Data Frequencies and Distributions

Kernel Density Plot by condition

sm.density.compare(datRT, datcondition,xlab="Response
Time")

Density
0.003 0.004 0.005
! l

0.002
1

0.001
1

0.000
1

T T T T T T
1200 1400 1600 1800 2000 2200 2400

Response Time
60 /264

Continuous Data Frequencies and Distributions

Kernel Density Plot by condition

sm.density.compare(datRT, datcondition,xlab="Response
Time",
lty=c(1,1,1),col=c("green","brown","orange"))

Density
0.003 0.004 0.005
| |

0.002
1

0.001
1

0.000
|
A

T T T T T T
1200 1400 1600 1800 2000 2200 2400

Response Time

61/ 264

Continuous Data Frequencies and Distributions

Continuous (Metric) Data:

Means and Deviations

62 /264

Continuous Data Frequencies and Distributions

Bar Plot of means

m <- aggregate(RT ~ condition,dat,mean)
barplot (m$RT,names.arg=m$condition)

1500

1000
|

500
|

63 /264

Continuous Data Frequencies and Distributions

R Basics

@ The aggregate() splits the data into subsets and performs a given
operation on all subsets individually

@ aggregate(RT ~ condition,dat,mean) splits dat by condition,
and then applies the mean () function to the RT column

@ The data can be split over several variables at the same time:
aggregate(RT ~ condition + time,dat,mean)

64 /264

Continuous Data Frequencies and Distributions

Bar Plot of means: Customizing

m <- aggregate(RT ~ condition,dat,mean)
barplot (m$RT,names.arg=m$condition,

col="red",xlab="Condition",ylab="Mean RT (in ms)")

.III
1 2 3

1000 1500

Mean RT (in ms)

500
|

65 /264

Continuous Data Frequencies and Distributions

Bar Plot of means: Error Bars

o Installing and loading the sciplot package
install.packages("sciplot")
library(sciplot)

o Package included the bargraph.CI() function

66 /264

Continuous Data Frequencies and Distributions

Bar Plot of means: Error Bars

bargraph.CI(x.factor=dat$condition,response=dat$RT)

1500

1000
|

500
|

67 /264

Continuous Data Frequencies and Distributions

Bar Plot of means: Adjusting the y-axis

bargraph.CI(x.factor=dat$condition,response=dat$RT,
ylim=c(1400,1900))

1600 1700 1800 1900
| | |

1500

1

1400
L

68 /264

Continuous Data Frequencies and Distributions

Adjusting the y-axis

@ Adjusting the y-axis is a great way to misrepresent your data and
mislead your audience:
https://heap.io/blog/data-stories/
how-to-lie-with-data-visualization

Same Data, Different Y-Axis

Interest Rates Interest Rates
3.154% 3.50%
3.152% 3.00%
3.150% 2.50%
3.148% 2.00%
3.146% 1.50%
3.144% 1.00%
3.142% 0.50%
3.140% 0.00%
2008 2009 2010 2011 2012 2008 2009 2010 2011 202

69 /264

https://heap.io/blog/data-stories/how-to-lie-with-data-visualization
https://heap.io/blog/data-stories/how-to-lie-with-data-visualization

Continuous Data Frequencies and Distributions

Bar Plot of means: Error Bars

@ One main purpose of error bars is to provide at leat some reference
frame

70/ 264

Continuous Data Frequencies and Distributions

Bar Plot of means: Error Bars

@ One main purpose of error bars is to provide at leat some reference
frame

@ Another purpose is of course to indicate the variability of data, which
is critical when it comes to the statistical testing for effects

70/ 264

Continuous Data Frequencies and Distributions

Bar Plot of means: Error Bars

@ One main purpose of error bars is to provide at leat some reference
frame

@ Another purpose is of course to indicate the variability of data, which
is critical when it comes to the statistical testing for effects

@ However, in many cases, it's not completely clear which error bars
should be used

70/ 264

Continuous Data Frequencies and Distributions

Bar Plot of means: Error Bars

@ Moreover, errors bars are also criticized:
http:
//biostat.mc.vanderbilt.edu/wiki/Main/DynamitePlots

71/ 264

http://biostat.mc.vanderbilt.edu/wiki/Main/DynamitePlots
http://biostat.mc.vanderbilt.edu/wiki/Main/DynamitePlots

Continuous Data Frequencies and Distributions

Bar Plot of means: Error Bars

@ Moreover, errors bars are also criticized:
http:
//biostat.mc.vanderbilt.edu/wiki/Main/DynamitePlots

@ We will deal with these issues later

71/ 264

http://biostat.mc.vanderbilt.edu/wiki/Main/DynamitePlots
http://biostat.mc.vanderbilt.edu/wiki/Main/DynamitePlots

Continuous Data Frequencies and Distributions

Bar Plot of means: Error Bars

@ At this point, the Box Plot by conditions might be one of the most
“honest” ways to display the data

72/ 264

Continuous Data Frequencies and Distributions

Bar Plot of means: Error Bars

@ At this point, the Box Plot by conditions might be one of the most
“honest” ways to display the data

@ Something like vertical histograms might be even better, but they

need some coding in R (which is why we won't deal with them here)
Altersaufbau [2010 <]

Hamburg Beilin
100 00

0 Ts 10 Tsd 10 Tsd 10T
1.8 Will. 3.4 Mill.

72 /264

Continuous Data Frequencies and Distributions

Bar Plot of means: Two-factorial

@ Include a second factor in the plots:
bargraph.CI(x.factor=dat$condition,group=dat$time,
response=dat$RT,ylim=c(1400,2000))

1600 1700 1800 1900 2000
| | |

1500
|

| -

1400

73 /264

Continuous Data Frequencies and Distributions

Bar Plot of means: Two-factorial with legend

bargraph.CI(x.factor=dat$condition,group=dat$time,
response=dat$RT,ylim=c (1400,2000) ,legend=T)

2000
|

| Tl

o o _T12
S _|
>
=1
o
Q
]
-
o
S |
~
—
o
Q
@
-
o
o |
iy}
—
g | N =
o
<
-

1 2 3

74/ 264

Continuous Data Frequencies and Distributions

Bar Plot of means: Customize

bargraph.CI(x.factor=dat$condition,group=dat$time,
response=dat$RT,ylim=c(1400,2000) ,legend=T,
x.leg=1,xlab="Condition",ylab="Response Time (ms)")

o
S _
Q
| Tl
° o T2
S |
&
<
z g |
E g
£
= 8
R
s S
c
2
2 3
o 3 -
r 4
o
S |
I}
-

1400

1 2 3

Condition 75 /264

Continuous Data Frequencies and Distributions

Line Plot of means

@ In many publications, you will see Line Plots instead of Bar Plots to
display the mean values and standard error per condition

76 / 264

Continuous Data Frequencies and Distributions

Line Plot of means

@ In many publications, you will see Line Plots instead of Bar Plots to
display the mean values and standard error per condition

@ This is mostly convention, but it can be justified

76 / 264

Continuous Data Frequencies and Distributions

Line Plot of means

@ In many publications, you will see Line Plots instead of Bar Plots to
display the mean values and standard error per condition

@ This is mostly convention, but it can be justified

@ The only thing that matters for a Bar Plot is their height; however,
there are more (unnecessary) dimensions on display (width, area)

76 / 264

Continuous Data Frequencies and Distributions

Line Plot of means

@ In many publications, you will see Line Plots instead of Bar Plots to
display the mean values and standard error per condition

@ This is mostly convention, but it can be justified

@ The only thing that matters for a Bar Plot is their height; however,
there are more (unnecessary) dimensions on display (width, area)

@ Sometimes, the area can be informative, and here it can get confusing

76 / 264

Continuous Data Frequencies and Distributions

Line Plot of means

lineplot.CI(x.factor=dat$condition,group=dat$time,
response=dat$RT,ylim=c (1400,2000))

fun of response

1400 1500 1600 1700 1800 1900 2000
1

1 2 3

x.factor

77/ 264

Continuous Data Frequencies and Distributions

Line Plot of means: Customize

lineplot.CI(x.factor=dat$condition,group=dat$time,
response=dat$RT,ylim=c(1400,2000) ,legend=T,
x.leg=1,xlab="Condition",ylab="Response Time (ms)")

Response Time (ms)

1400 1500 1600 1700 1800 1900 2000
1

1 2 3

Condition 78 /264

Continuous Data Frequencies and Distributions

Line Plot of means: Customize

lineplot.CI(x.factor=dat$condition,group=dat$time,
response=dat$RT,ylim=c(1400,2000) ,legend=T,
x.leg=1,x1lab="Condition",ylab="Response Time (ms)",

type="p")

o
o |
o
N
o
g - T £
= o T2
-]
E 8
QE)H
= 8]
g S
c
o
g 8
& S8 +
o
o _|
n
—
o =
o _|
<
-
1 2 3
Condition

79/ 264

Continuous Data Frequencies and Distributions

Line Plot of means: Customize

lineplot.CI(x.factor=dat$condition,group=dat$time,
response=dat$RT,ylim=c(1400,2000) ,legend=T,
x.leg=1,x1lab="Condition",ylab="Response Time (ms)",
type="p",pch=c(17,8)

o
o
o
N
o
g4 M EY
= * T2
=]
E 81
q_)'_'
£
= 8]
g S
<
o
7 3
g @ 4
o
o
n
—
° E 3
o _|
<
-
1 2 3
Condition

80 /264

Continuous Data

Points in R: The pch option

Frequencies and Distributions

81/ 264

Continuous Data Relations between Continuous Variables

Relations between Variables

@ We have discussed plots of multi-dimensional data before:

o Multiple discrete variables: stacked Bar Plots, Mosaic Plots,
overlapping Kernel Density Plots

o Multiple discrete 4+ 1 continuous variable: Bar/Line Plots by condition

@ Now we turn to cases with multiple continuous variables

82/264

Scatter Plot

Continuous Data

plot(datRT,datFT)

dat$FT

2500 3000 3500

2000

Relations between Continuous Variables

— o
o
o
® o °
o o
o mo ° °
o g o ©
o o o o o
— o, 0% e %0 @ o
° % o ° 00)
oo ° % o ©° %09 %
o o 8,2 @ ® o, o
&
o ©° uogﬁ@“ﬂ ioﬂ ° 09 o
oF | BT 088, "o g0 Op
° o o J o o %o [}
| %% Sog00 0 o o
0 20074 98 6% 5 o 2 °
o 8 °° R&goe° o
o 0 o o
o f0%8,8 8e & o
0® 08,70 0.
0,2 8% o0 | R
oo °
4 o o g"
o
© o
o
T T T T
1400 1600 1800 2000
dat$RT

83 /264

Continuous Data Relations between Continuous Variables

Scatter Plot: Customize

plot(datRT,datFT,
xlab="Starting Time (ms)",ylab="Finishing Time (ms)",
pch=20,col="grey")

o
o |
0
™
o
S |

—~ 8

D ®

E

®

£
o

-
re]

£ o

=

3

<

i
o
o |
S
N

T T T T
1400 1600 1800 2000

Starting Time (ms) 84 /264

Continuous Data Relations between Continuous Variables

Scatter Plot: Alternative command

plot(FT ~ RT, data = dat,
xlab="Starting Time (ms)",ylab="Finishing Time (ms)",
pch=20,col="grey")

o
o |
0
™
o
S |

—~ 8

D ®

E

®

£
o

-
re]

£ o

=

3

<

i
o
o |
S
N

T T T T
1400 1600 1800 2000

Starting Time (ms) 85 /264

Continuous Data Relations between Continuous Variables

Scatter Plot by Condition

@ We now make a first step in the direction of step-wise plotting
@ General procedure: Create a plot containing the points for one

condition, then add the points for the other conditions in a different
color

86 /264

Continuous Data Relations between Continuous Variables

R Basics: Indexing

@ See Introduction: data frames can be indexed using the [,] square

brackets
dat[1,] extracts the first row

@ Create an index that only extracts a certain factor level:

dat [dat$condition == 1,]

@ Logical operators in R:

I=

<or >

<= or >=

&

&&

|

|

hink

1 (X) (where X is another statement)

equal to

not equal to
smaller/greater than
smaller/greater or equal
element-wise AND
AND

element-wise OR

OR

included in

NOT

87 /264

Continuous Data Relations between Continuous Variables

Scatter Plot by condition

plot(FT ~ RT, data = dat[dat$condition == 1,],
xlab="Starting Time (ms)",ylab="Finishing Time (ms)",
pch=20,col="blue")

o
S |
@
&
— s
5 _
E
s o
E 9 : -
E s
=3
£
£ _
i)
KR
L s |
S
Q
=)
S |
@
B T T T T T T T

1300 1350 1400 1450 1500 1550 1600

Starting Time (ms) 88 /264

Continuous Data Relations between Continuous Variables

Scatter Plot by condition

@ Ensure that the axes are sufficiently long to display all data
plot(FT ~ RT, data = dat[dat$condition == 1,],
xlab="Starting Time (ms)",ylab="Finishing Time (ms)",
pch=20,col="blue",xlim=range (dat$RT) ,ylim=range (dat$FT))

3500

3000
|

Finishing Time (ms)
2500

2000
|

T T T T
1400 1600 1800 2000

Starting Time (ms) 89 /264

Continuous Data Relations between Continuous Variables

Scatter Plot by condition

@ Add the points for condition 2
plot(FT ~ RT, data = dat[dat$condition == 1,],
xlab="Starting Time (ms)",ylab="Finishing Time (ms)",
pch=20,col="blue",ylim=range (dat$FT))

points(FT ~ RT,data=dat[dat$condition==2,],
pch=20,col="red")

3000 3500
I I

Finishing Time (ms)
2500

2000
I

1400 1600 1800 2000

Starting Time (ms) 90 /264

Continuous Data Relations between Continuous Variables

Scatter Plot by condition

@ Add the points for condition 3
plot(FT ~ RT, data = dat[dat$condition == 1,],
xlab="Starting Time (ms)",ylab="Finishing Time (ms)",
pch=20,col="blue",ylim=range (dat$FT))

points(FT ~ RT,data=dat[dat$condition==2,],
pch=20,col="red")

points(FT ~ RT,data=dat[dat$condition==3,],
pch=20,col="green")

91 /264

Continuous Data

Scatter Plot by condition

@ Add the points for condition 3

Relations between Continuous Variables

o
o _|
Ty)
™
4
8 PR
S - . .t of een s
B ® . L L
E ol
Q
£ el
[o ‘. ©
2 & e
£ .
Q
c
£
o
o _|
o
N
T T T I
1400 1600 1800 2000

Starting Time (ms)

92/264

Continuous Data Relations between Continuous Variables

Scatter Plot by condition

@ Another (maybe simpler) method:
cols <- c("blue","red","green")
cols2 <- cols[as.numeric(dat$condition)]
plot(FT ~ RT,data=dat,col=cols2,pch=20)

3500

3000

FT
2500

2000

1400 1600 1800 2000

RT 93 /264

Continuous Data Relations between Continuous Variables

Scatter Plot by condition

o Add a legend

plot(FT ~ RT, data = dat[dat$condition == 1,],
xlab="Starting Time (ms)",ylab="Finishing Time (ms)",
pch=20,col="blue",ylim=range (dat$FT))

points(FT ~ RT,data=dat[dat$condition==2,],
pch=20,col="red")

points(FT ~ RT,data=dat[dat$condition==3,],
pch=20,col="green")

legend(x ="topleft",legend=c(1,2,3),
col=c("blue","red","green") ,pch=20,title="Condition")

94 /264

Continuous Data Relations between Continuous Variables

Scatter Plot by condition
o Add a legend

8
n —|Condition .
™ .
<1 e . .
.« 2 . .t e, .
° .3 .
g
7 ®
S
E . .
° .
£
o
kg]
Tel
£ «
e
Q
£
w
o
S _|
S
N

T T T T
1400 1600 1800 2000

Starting Time (ms)
95 /264

Continuous Data Relations between Continuous Variables

Scatter Plot by two conditions: An example

plot(FT ~ RT, data=dat[dat$condition==1 & dat$time=="T1",],
xlab="Starting Time (ms)",ylab="Finishing Time (ms)",
pch=20,col="blue",ylim=range (dat$FT) ,xlim=range (dat$RT))
points(FT ~ RT, data=dat[dat$condition==1 &
dat$time=="T2",] ,pch=20,col="1lightblue")

points(FT ~ RT,data=dat[dat$condition==2 &
dat$time=="T1",],pch=20,col="red")

points(FT ~ RT,data=dat[dat$condition==2 &
dat$time=="T2",],pch=20,col="pink")

points(FT ~ RT,data=dat[dat$condition==3 &
dat$time=="T1",],pch=20,col="green")

points(FT ~ RT,data=dat[dat$condition==3 &
dat$time=="T2",],pch=20,col="lightgreen")

legend (x="topleft",legend=c(1,2,3,rep("T1",3) ,rep("T2",3))
,col=c(rep("white",3),"blue","red","green",
"lightblue","pink","lightgreen") ,pch=20,ncol=3)

96 /264

Continuous Data Relations between Continuous Variables

Scatter Plot by two conditions: An example

o
(=}
L
™

Finishing Time (ms)

2500 3000

2000

T T2

T T2 i .
©TL -T2 . . .

"_..;_'.:-' ., ’ ..'

o e 2 . .

. . > o 0 . * N .c

I I I I
1400 1600 1800 2000

Starting Time (ms)

97 / 264

Continuous Data Relations between Continuous Variables

Linear Regression

@ Regression: Predict one value with another value (or a set of other
values)

@ Linear Regression: y = b-x+ a+ ¢,
with e being an unsystematic error

@ Estimate a and b by minimizing the deviation between predicted and
actual values

98 /264

Continuous Data Relations between Continuous Variables

Linear Regression

plot(FT ~ RT,data=dat,
xlab="Starting Time (ms)",ylab="Finishing Time (ms)",
pch=20,col="grey")

regr <- 1m(FT ~ RT,data=dat)

abline(regr)

2500 3000 3500
1 1 1

Finishing Time (ms)

2000
|

T T T T
1400 1600 1800 2000

Starting Time (ms) 09 /264

Continuous Data Relations between Continuous Variables

Linear Regression: Customize

plot(FT ~ RT,data=dat,
xlab="Starting Time (ms)",ylab="Finishing Time (ms)",
pch=20,col="grey")

regr <- 1m(FT ~ RT,data=dat)
abline(regr,lty=2,1lwd=3)

o

o _|

n

(3]

]

(=]
s B L >
) ™ -
£ o

-

g e
I o -

o _|
28 P
3 PR
2 L
o

(=]

o

o

~N

T T T T
1400 1600 1800 2000

Starting Time (ms)

100/ 264

Continuous Data Relations between Continuous Variables

Lines in R: The 1ty option

6.'twodash’ —~—ce—ecc—ecc—-

5.longdash’ = —— = —— .

4.'dotdash’ == === cw-. -
3.'dotted” @ ~=-=====------

2'dashed’ = = = = = = =

1.'solid’

0.'blank’

101 /264

Continuous Data Relations between Continuous Variables

Linear Regression: Confidence Intervals (the long way)

@ You might want to add some indication about the confidence of your
prediction: A confidence interval around the predicted values

Long script:

plot(FT ~ RT,data=dat,

xlab="Starting Time (ms)",ylab="Finishing Time (ms)",
pch=20,col="1lightgrey")

regr <- 1m(FT ~ RT,data=dat)

abline(regr,lwd=2)

newdat <- seq(min(dat$RT)-50,max(dat$RT)+50,length.out=10000)

CI <- predict(regr, newdata=data.frame(RT=newdat),
interval="confidence", level = 0.95)

matlines(newdat, CI[,2:3], 1ty=2,col="black")

102 /264

Continuous Data Relations between Continuous Variables

Linear Regression: Confidence Intervals (the long way)

o
Q]
¥o
[

3000

2500

Finishing Time (ms)

2000
|

T T T T
1400 1600 1800 2000

Starting Time (ms)
103 / 264

Continuous Data Relations between Continuous Variables

Linear Regression: Confidence Intervals (the short way)

@ Use the effects package install.packages("effect")
library(effects)

104 / 264

Continuous Data Relations between Continuous Variables

Linear Regression: Confidence Intervals (the short way)

regr <- 1m(FT ~ RT,data=dat)

plot(effect ("RT",regr))
RT effect plot

1 1 1 1

3000 + -

2800 r

FT

2600 -

2400 4 -

1400 1600 1800 2000

RT
105 / 264

Continuous Data Relations between Continuous Variables

Linear Regression: Customize

@ The plot.effect command (called when using plot(effect(...)))
has a lot of options

@ These are arranged into several clusters, and each cluster can be
specified using a 1ist

@ See the help function at ?plot.effect

106 / 264

Continuous Data Relations between Continuous Variables

Linear Regression: Customize

regr <- 1m(FT ~ RT,data=dat)

plot(effect ("RT",regr),ylim=range (dat$FT),
xlab="Starting Time (ms)",ylab="Finishing Time (ms)",main="",
lines=list(col="black"),axes=list(ylim=range(dat$FT)) ,rug=F)

1 1 1 1

3000 — r

2500 — L

Finishing Time (ms)

2000 — L

T T T T
1400 1600 1800 2000

Starting Time (ms) 107/ 264

Continuous Data Relations between Continuous Variables

Linear Regression: Customize

@ Adding points takes a bit of a workaround with the lattice package

install.packages("lattice")
library(lattice)

regr <- 1m(FT RT,data=dat)

plot(effect ("RT",regr),ylim=range (dat$FT),
xlab="Starting Time (ms)",ylab="Finishing Time (ms)",main="",
lines=list(col="black") ,axes=1list(ylim=range(dat$FT)) ,rug=F)

trellis.focus("panel", 1, 1, highlight=F)
panel.points(datRT, datFT,pch=20,col="black",cex=.3)

trellis.unfocus()

@ There are simpler options using the ggplot2 package

108 / 264

Continuous Data

Linear Regression: Customize

Finishing Time (ms)

Relations between Continuous Variables

3000

2500 .,

2000 —*

1400

T T
1600 1800

Starting Time (ms)

2000

109/ 264

Continuous Data Relations between Continuous Variables

Linear Regression by condition

plot (FT ~ RT,data=dat[dat$condition==1,],
xlab="Starting Time (ms)",ylab="Finishing Time (ms)",
pch=20,col="blue",ylim=range (dat$FT) ,xlim=range (dat$RT))

abline(1m(FT ~ RT,data=dat[dat$condition==1,]),col="blue")

points(FT ~ RT,data=dat[dat$condition==2,],pch=20,col="red")
abline(Im(FT ~ RT,data=dat[dat$condition==2,]),col="red")

points(FT ~ RT,data=dat[dat$condition==3,],
pch=20,col="black")

abline(1Im(FT ~ RT,data=dat[dat$condition==3,]),col="black")

legend(x ="topleft",legend=c(1,2,3),
col=c("blue","red","black"),lty=1,title="Condition")

110/ 264

Continuous Data Relations between Continuous Variables

Linear Regression by condition

o
o
n
™

Finishing Time (ms)

2500 3000

2000

Condition .
—_— 1 .
- 5 . . e R .

— 3

T T T T
1400 1600 1800 2000

Starting Time (ms)

111264

Continuous Data Relations between Continuous Variables

Linear Regression by condition

regr <- 1m(FT ~ RT*condition,data=dat)
plot(effect ("RT*xcondition",regr))

RT*condition effect plot

1 1
condition = 3

- ~ 3500

4 I 3000

4 I 2500

4 F 2000

e condition = 1 condition = 2
3500 H
3000 -
2500 / |
2000 H
m T I U B8
T T T T T T T
1400 1600 1800 2000
RT

112 /264

Continuous Data Relations between Continuous Variables

Linear Regression by condition

regr <- 1m(FT ~ RT*condition,data=dat)

plot(effect ("RT*xcondition",regr),lines=list(multiline=TRUE))

FT

3200

3000 4 r

2800 L

2600 - r

2400 1 L

2200 1 r

RT*condition effect plot
condition

2
3

1400 1600 1800 2000
RT

113 /264

Continuous Data

Linear Regression by condition

Relations between Continuous Variables

regr <- 1m(FT ~ RT*condition,data=dat)

plot(effect ("RT*xcondition",regr),lines=list(multiline=TRUE),
confint = list(style="bands"))

RT*condition effect plot

condition
1

3

1 1
3500 1 r
3000 4 r
[
w
2500 - L
2000 1 r
1400 1600

1800 2000

114 /264

Continuous Data Relations between Continuous Variables

Non-linear Regression

@ Sometimes, the relation between two variables is not linear

In these cases, a non-linear regression design can be helpful

Be careful: This can increase the degrees of freedom of your analysis
substantially!

Do you have a reason to expect non-linear effects?
(On the other hand, why should linear be the default?)

115 /264

Continuous Data Relations between Continuous Variables

Non-linear Regression

@ Sometimes, the relation between two variables is not linear

In these cases, a non-linear regression design can be helpful

Be careful: This can increase the degrees of freedom of your analysis
substantially!

Do you have a reason to expect non-linear effects?
(On the other hand, why should linear be the default?)

116 / 264

Continuous Data

Non-linear Regression

@ Example: Word Frequency Effect
(Brysbaert, Mandera & Keuleers, 2017)

PProbability of Words Being Knawn

Relations between Continuous Variables

= High Vocabulary
= = = Medium Vocabulary
= Low Vocabulary

3 4 5 B 7
Word Frequency (Zipf)

Response Time {ms)

Ward Frequency (Zipf)

117/ 264

Continuous Data Relations between Continuous Variables

Non-linear Regression: Quadratic Regression

@ Create a new column FTnew in your data frame which is based on RT
raised to the power of 2, plus some noise
dat$FTnew <- (dat$RT-1400) "2 + rnorm(nrow(dat),0,20000)

o Fit a new regression model
regr2 <- 1m(FTnew ~ poly(RT,2),data=dat)

@ Also allows the use of higher-order polynomials

118 /264

Continuous Data Relations between Continuous Variables

Non-linear Regression: Quadratic Regression

regr2 <- 1lm(FTnew ~ poly(RT,2),data=dat)
plot (FTnew ~ RT,data=dat,pch=20,cex=.3)
lines(sort(dat$RT),fitted(regr2) [order (dat$RT)],col="red")

4e+05
|

FTnew

2e+05
|

0e+00
|

1400 1600 1800 2000

RT 119 /264

Continuous Data Relations between Continuous Variables

Non-linear Regression: Generalized

e With a quadratic regression (i.e., polynomial degree 2), we are
committing to a specific shape of relation

@ We can relax this assumption by considering generalized non-linear
effects

o Fit a non-linear regression model:
regr3 <- loess(FTnew ~ FT, data=dat)

@ This function relies on local polynomial fitting

120/ 264

Continuous Data Relations between Continuous Variables

Non-linear Regression: Generalized

plot(FTnew FT,data=dat,pch=20,cex=.3)
regr3 <- loess(FTnew ~ FT,data=dat)
lines(sort(dat$FT),fitted(regr3) [order (dat$FT)],col="blue")

4e+05
|

FTnew

2e+05
|

0e+00
|

T T T T
2000 2500 3000 3500

FT 121/ 264

Continuous Data Relations between Continuous Variables

Non-linear Regression: Generalized

@ Another option for non-linear effects are Generalized Additive Models
(GAMs) as implemented in the mgcv package:
install.packages("mgcv")
library (mgcv)

@ Again, be a bit careful with non-linear effects

o Fit a GAM:
regrd j- gam(FTnew s(FT),data=dat)

@ s() to include a non-linear effect

122 /264

Continuous Data Relations between Continuous Variables

Non-linear Regression: Generalized

regr4d <- gam(FTnew ~ s(FT),data=dat)
plot(regr4,xlab="Finishing Time",ylab="Effect")

4e+05
|

2e+05
|

Effect

0e+00
|

—2e+05

,”"

2000 2500 3000 3500
Finishing Time

123 /264

Continuous Data Relations between Continuous Variables

Non-linear Regression: Generalized

plot(FTnew ~ FT,data=dat,pch=20,cex=.3)
regr4 <- gam(FTnew ~ s(FT),data=dat)
lines(sort(dat$FT),fitted(regrd) [order(dat$FT)],col="purple")

4e+05
|

FTnew

2e+05
|

0e+00
|

T T T T
2000 2500 3000 3500

FT 124 / 264

Continuous Data Relations between Continuous Variables

Linear Regression: Continuous interactions

o Fit a regression model predicting FTnew from a linear interaction
between RT and FT
creg <- 1m(FTnew ~ RT*FT,data=dat)

@ With an interaction, the effect of one of these predictors on the
outcome depends on the value of the other predictor

125 /264

Continuous Data Relations between Continuous Variables

Linear Regression: Continuous interactions

@ Option 1: "Splitting” one of the variables into discrete levels

@ The easiest way of doing this employs the effects package

126 / 264

Continuous Data Relations between Continuous Variables

Linear Regression: Continuous interactions

cregl <- 1m(FTnew ~ RT*FT,data=dat)
plot(effect ("RT*FT",cregl))

RT*FT effect plot

1400 1600 1800 2000

T R R R
FT = 3000 FT = 3500
Bl [4es05
Bl [2e+05
Bl [oe+00
Bl [-2e+05
: - e
c FT = 1600 FT = 2100 FT = 2600
s
4e+05 | S
2405 -| > S
— z.
= -
0e+00 ~ - r
20405 r
——_y —
1400 1600 1800 2000 1400 1600 1800 2000

RT

127 /264

Continuous Data

Relations between Continuous Variables

Linear Regression: Continuous interactions

cregl <- 1lm(FTnew ~ RT*FT,data=dat)
plot(effect ("RT*FT",cregl),lines=1list(multilines=TRUE))

FTnew

RT*FT effect plot
FT
1600 3000
2100 3500
2600
1 1 1 1
5e+05 r
4e+05 r
3e+05 r
2e+05 4 r
1e+05 4 r
0e+00 r
-1e+05 — r
—2e+05 - I~
1400 1600 1800 2000
RT

128 /264

Continuous Data Relations between Continuous Variables

Linear Regression: Continuous interactions

creg2 <- 1lm(FTnew ~ FT*RT,data=dat)
plot(effect ("FT*RT",creg2),lines=1list(multilines=TRUE))

FT*RT effect plot

5e+05 r
4e+05 r
3e+05 r

2e+05 4 r

1e+05 / F

0e+00 \ -

-1e+05 — r

FTnew

—-2e+05 — r

2000 2500 3000 3500
FT

129 /264

3D-Plots

2
7}
2
5
a8

0.001 0.002 0.003 0.004 0.005

0.000

Continuous Data

Relations between Continuous Variables

RT*FT effect plot

FT
3000 ——
3500

o

5405 - B

40405

3e405

20405 -

FTnew

1405 -

0400 -

10405 -

20405

1200

1400

1600

T
1800

Response Time

T
2000

f
T 1400 1600 1800 2000
2200 2400 RT

130 /264

Continuous Data Relations between Continuous Variables

3D Scatter Plots

@ Very similar to the usual Scatter Plot, just with a "second x-axis”
@ Option 1: The scatterplot3d package
@ Load the package

install.packages("scatterplot3d")
load(scatterplot3d)

131 /264

Continuous Data Relations between Continuous Variables

3D Scatter Plots

scatterplot3d(x=dat$RT,y=dat$FT,z=dat$FTnew)

dat$FTnew

3500

dat$FT

)
£ T ° 3000

2500
2000

1500

—1le+05 0e+00 1e+05 2e+05 3e+05 4e+05 b5e+05 6e+05

1200 1400 1600 1800 2000 2200

dat$RT
132 /264

Continuous Data Relations between Continuous Variables

3D Scatter Plots: Customize

scatterplot3d(x=dat$RT,y=dat$FT,z=dat$FTnew,

angle=120)

o
o B
o oo
o 9
2
$
3
0
8
2
&
8
0
8
9
&
<
I
s 3
g 2
i
- 8 &
L o I}
& 3500 §
<] "
S 8
3000 e
2500 3
3
2000 8
"
8
1500 3
1200 1400 1600 1800 2000 22007
dat$RT

133 /264

Continuous Data Relations between Continuous Variables

3D Scatter Plots: Customize

colors <- c("red","blue","green")

colors <- colors[as.numeric(dat$condition)]
scatterplot3d(x=dat$RT,y=dat$FT,z=dat$FTnew,
angle=120,color=colors,pch=20)

dat$FTnew

3500

dat$FT

3000

2500

2000

1500

~1e+05 0e+00 1e+05 2e+05 3e+05 4e+05 5e+05 6e+05

1200 1400 1600 1800 2000 2200
dat$RT

134 /264

Continuous Data Relations between Continuous Variables

3D Scatter Plots: Customize

colors <- c("red","blue","green")

colors <- colors[as.numeric(dat$condition)]
scatterplot3d(x=dat$RT,y=dat$FT,z=dat$FTnew,angle=120,
color=colors,pch=20)

legend("left", legend = levels(dat$condition),

title="condition", col=c("red","blue","green"), pch=20)

conditjon

dat$FT
]
8

1e+05 0e+00 1e+05 2e+05 3e+05 4e+05 5e+05 6e+05
dat$FTnew

1200 1400 1600 1800 2000 22007

datsRT 135 /264

Continuous Data Relations between Continuous Variables

3D Scatter Plots: Regression Plane

@ (Does not work with interaction terms)
s3d <- scatterplot3d(x=dat$RT,y=dat$FT,z=dat$FTnew,
angle=120,pch=20,color="grey")
reg3d <- 1m(FTnew ~ RT + FT,data=dat)
s3d$plane3d(reg3d)

dat$FT

1e+05 0e+00 1e+05 2e+05 3e+05 4e+05 5e+05 6e+05
dat$FTnew

1200” 1400 1600 1800 2000 22007

dat$RT

136 /264

Continuous Data Relations between Continuous Variables

3D Scatter Plots: Customize Regression Plane

@ (Does not work with interaction terms)
s3d <- scatterplot3d(x=dat$RT,y=dat$FT,z=dat$FTnew,
angle=120,pch=20,color="grey")
reg3d <- 1m(FTnew ~ RT + FT,data=dat)
s3d$plane3d(regdd,lty=1,
draw_polygon=T,polygon_args=list (col=rgb(1,0,0,0.5)))

dat$FTnew

3500

dat$FT
1e+05 0e+00 1e+05 2e+05 3e+05 4e+05 5e+05 Ge+05

D 1400 1600 1800 2000 22007

dat$RT 137 /264

Continuous Data Relations between Continuous Variables

3D Scatter Plots

@ For a tutorial on 3D Scatter plots, see
http://www.sthda.com/english/wiki/
scatterplot3d-3d-graphics-r-software-and-data-visualization

138 /264

http://www.sthda.com/english/wiki/scatterplot3d-3d-graphics-r-software-and-data-visualization
http://www.sthda.com/english/wiki/scatterplot3d-3d-graphics-r-software-and-data-visualization

Continuous Data Relations between Continuous Variables

3D Scatter Plots

@ Option 2: The lattice package

o Load the package (we have installed it before):
library(lattice)

139 /264

Continuous Data Relations between Continuous Variables

3D Scatter Plots

cloud(FTnew ~ RT + FT,data=dat)

FTnew

140 / 264

Continuous Data Relations between Continuous Variables

3D Scatter Plots: Customize

cloud(FTnew ~ RT + FT,data=dat)

FTnew

141 /264

Continuous Data Relations between Continuous Variables

3D Scatter Plots: Customize

colors <- c("red","blue","green")
colors <- colors[as.numeric(dat$condition)]
cloud(FTnew ~ RT + FT,

data=dat,col=colors,scales=1list(arrows=F),pch=20)

1400 RT

142 / 264

Continuous Data Relations between Continuous Variables

3D Scatter Plots: Customize

cloud(FTnew ~ RT + FT,
data=dat,group=condition,scales=1list (arrows=F) ,pch=20)

143 /264

Continuous Data Relations between Continuous Variables

3D Scatter Plots: Customize

@ For a third option using the packages plot3D and plot3Drgl, see
this tutorial:

http://www.sthda.com/english/wiki/
impressive-package-for-3d-and-4d-graph-r-software-and-data-visualization

144 /264

http://www.sthda.com/english/wiki/impressive-package-for-3d-and-4d-graph-r-software-and-data- visualization
http://www.sthda.com/english/wiki/impressive-package-for-3d-and-4d-graph-r-software-and-data- visualization

Continuous Data Relations between Continuous Variables

Going fancy: The rgl package

o Install the rgl package:
install.packages("rgl")
library(rgl)

145 / 264

Continuous Data Relations between Continuous Variables

Going fancy: The rgl package

o Install the rgl package:
install.packages("rgl")
library(rgl)

146 / 264

Continuous Data

3D Scatter Plots: rgl

Relations between Continuous Variables

plot3d(x=dat$RT,y=dat$FT,z=dat$FTnew)

1400 1600 1800 2000 2200

6e+005
5e+005
4e+005
3e+005
2e+005

1e+005

0

3500

3000

2500

datssgo,

dat$RT

147 / 264

Continuous Data

3D Scatter Plots: rgl

Relations between Continuous Variables

plot3d(x=dat$RT,y=dat$FT,z=dat$FTnew)

1400 1600 1800 2000 2200

6e+005
5e+005
4e+005
3e+005
2e+005

1e+005

0

3500

3000

2500

datssgo,

dat$RT

148 / 264

Continuous Data

3D Scatter Plots: rgl

Relations between Continuous Variables

colors <- c("red","blue","green")

colors <- colors[as.numeric(dat$condition)]
plot3d(x=dat$RT,y=dat$FT,z=dat$FTnew,col=colors)

1400 1600 1800 2000 2200

6e+005

5e+005

4e+005

3e+005

2e+005

1e+005

0

3500

3000

datsRT

149 /264

Continuous Data Relations between Continuous Variables

3D Scatter Plots: rgl animation

colors <- c("red","blue","green")
colors <- colors[as.numeric(dat$condition)]
plot3d(x=dat$RT,y=dat$FT,z=dat$FTnew,col=colors)

play3d(spin3d(), duration=12)

150 / 264

Continuous Data Relations between Continuous Variables

rgl plots: Regression Plane

plot3d(x=dat$RT,y=dat$FT,z=dat$FTnew,col="red")
reg3d <- 1m(FTnew ~ RT + FT,data=dat)

coefs <- coef (reg3d)

a <- coefs["RT"]

b <- coefs["FT"]

c <- -1

d <- coefs["(Intercept)"]

planes3d(a, b, ¢, d, alpha=0.5,col="red")

@ Use ¢ <- -1 for every data set

151 /264

Continuous Data

: Regression Plane

Relations between Continuous Variables

apoo 2200
1800
14pp 1600 |

o |t

\‘\
-
Ge+005
5e+005
4e+005
3e+005 T
2e+005

le+005

dat$RT

152 / 264

Continuous Data Relations between Continuous Variables

rgl plots: Regression "Plane” with interaction

plot3d(x=dat$RT,y=dat$FT,z=dat$FTnew,col="red")
reg3d2 <- 1lm(FTnew ~ RT#FT,data=dat)

grd <- expand.grid(RT=sort(unique(dat$RT)),
FT=sort (unique(dat$FT)))

grd$pred <- predict(reg3d2, newdata=grd)

persp3d(x=unique (grd$RT), y=unique(grd$FT),
z=matrix(grd$pred,length(unique (grd$RT)) ,length(unique (grd$¥T))),

add=TRUE, col="red",alpha=.7)
There is a function calles persp to create surface plots as "normal”,

static plots, but | find the rgl version simpler (can easily be added to
a Scatter Plot)

153 /264

Continuous Data Relations between Continuous Variables

2000 2200
1600 1800
1400

154 / 264

Continuous Data Relations between Continuous Variables

rgl plots: Regression "Plane” with interaction

@ By combining previous approaches, we could also plot interaction
planes by condition

@ Use the commands plot3d, points3d and persp3d in combination
with dat [dat$condition == 1,] and so on

@ Due to the amount of coding involved, this will be omitted from this
course

155 / 264

Continuous Data Relations between Continuous Variables

rgl plots: Surface Plots

@ Difference between Scatter Plots and Surface Plots: Surface Plots
need exactly one value of z for each value of x and y

156 / 264

Continuous Data Relations between Continuous Variables

rgl plots: Surface Plots

@ Difference between Scatter Plots and Surface Plots: Surface Plots
need exactly one value of z for each value of x and y

@ They are plots of functions

156 / 264

Continuous Data Relations between Continuous Variables

rgl plots: Surface Plots

@ Difference between Scatter Plots and Surface Plots: Surface Plots
need exactly one value of z for each value of x and y

@ They are plots of functions

@ Other examples: Histograms, Regression Lines

156 / 264

Continuous Data Relations between Continuous Variables

rgl plots: Surface Plots

@ Another example: Load the data set volcano:

data(volcano)

157 / 264

Continuous Data Relations between Continuous Variables

rgl plots: Surface Plots

@ Plot this matrix as a surface plot:
persp3d(x=1:nrow(volcano) ,y=1:ncol(volcano), z=volcano)

@ nrow(volcano) gives the number of rows of this matrix,
ncol(volcano) gives the number of columns

@ 1:nrow(volcano) gives all integer values from 1 to the number of
rows

158 / 264

Continuous Data Relations between Continuous Variables

rgl plots: Surface Plots

159 / 264

Continuous Data Relations between Continuous Variables

rgl plots: Surface Plots

@ Use terrain colors:
zlim <- range(volcano) zlen <- zlim[2] - zlim[1] + 1 colors
<- terrain.colors(zlen,alpha=0) col2 <-

colors[volcano-min(volcano)]

@ We have now created a color palette! This is actually very similar to
something like cols = c("red","blue","green")

@ We will have a closer look at color palettes later

160/ 264

Continuous Data Relations between Continuous Variables

rgl plots: Surface Plots

persp3d(x=1:nrow(volcano),y=1:ncol(volcano),
z=volcano,col=col?2)

" 161 /264

Continuous Data Relations between Continuous Variables

rgl plots: Surface Plots

@ So why exactly have we started plotting volcanoes now?

162 / 264

Continuous Data Relations between Continuous Variables

Surface Plots and Continuous Int

RT*FT effect plot

1ago 1600 1800 2000 2200

5e+05

40405 -

3405 o

2405 o

FTnew

16405 o
0e+00 { __—

10405 -

20405 |

Ly I w1
1400 1600 1800 2000
RT

163 /264

Continuous Data Relations between Continuous Variables

Surface Plots and Heat Maps

Color Key

100 160
Value

=
-

164 / 264

Continuous Data Relations between Continuous Variables

Heat Maps

Color Key Color Key
100 160 100 160
Vale Ve

Color Key Color Key

100 160 100 160
Value

165 / 264

Continuous Data Relations between Continuous Variables

Heat Maps: Common applications

e EEG frequency bands

10

Spectrogram of Raw Data,
e —t

Fe -
) »
c 08 -
T
3
(=
Y os
w
o
& 04
©
E..
= 0.2
=

00

0 30 60 90 120 150 180 210
Time [/s]

166 / 264

Continuous Data Relations between Continuous Variables

Heat Maps: Common applications

@ Speech frequency bands

Frequency (Hz)

Time (sec.)

167 /264

Continuous Data Relations between Continuous Variables

Heat Maps: Common applications

@ Correlation Matrices between many different variables

S ELGIS

168 / 264

Continuous Data Relations between Continuous Variables

Heat Maps

e Standard R contains a heatmap() function

@ But heatmap.2(), included in the gplots package, comes with more
options

@ Load the package

install.packages("gplots")
library(gplots)

169 / 264

miiidlll!!}ll!llll!h -
- 1

Relations between Continuous Variables

Continuous Data

Heat Maps

@ This is not really what we want:
e Factor-separating lines in the plot

e Rows and columns are clustered (as indicated by dendrograms at the
side) and re-ordered

o (This re-ordering is useful to plot correlation clusters)
171 /264

Continuous Data Relations between Continuous Variables

Heat Maps

heatmap.2(volcano,trace="none" ,Rowv=F)

Color Key

al

Count
0 400

100 160
Value

172 /264

Continuous Data Relations between Continuous Variables

Heat Maps

heatmap.2(volcano,trace="none" ,Rowv=F,Colv=F)

Color Key
a h

Count
0 400

100 160
Value

173 /264

Continuous Data Relations between Continuous Variables

Heat Maps: Change Color

heatmap.2(volcano,trace="none" ,Rowv=F,Colv=F,

col="terrain.colors")
Color Key

a
8
5"‘

o

100 160
Value

174 / 264

Continuous Data Relations between Continuous Variables

Heat Maps: Erase everything but the plot

heatmap.2(volcano,trace="none" ,Rowv=F,Colv=F,

col="terrain.colors")
Color Key

al
18
8%
o

100 160
Value

175/ 264

Continuous Data Relations between Continuous Variables

Heat Maps: Erase everything but the plot

@ The heatmap.2 function comes with many, many options specifying
e The heatmap itself
e The dendograms
e The axes
e The legend
o The general plot

@ To get an overview, call the help function:
?heatmap.2

176 / 264

Continuous Data Relations between Continuous Variables

Heat Maps: Multiple Regression

@ Back to our original data set:

heatregl <- 1lm(FTnew ~ RT + FT,data=dat)

grd <- expand.grid(RT=sort(unique(dat$RT)),
FT=sort (unique (dat$FT)))

grd$pred <- predict(heatregl, newdata=grd)
grd2 <- xtabs(pred ~ FT + RT,grd)
heatmap.2(grd2,Rowv=F,Colv=F,trace="none")

177/ 264

Continuous Data Relations between Continuous Variables

Heat Maps: Multiple Regression

Color Key
a N
(=3
=3
El=}
8%
o
—2e+05
Value

178 / 264

Continuous Data Relations between Continuous Variables

Heat Maps: Multiple Regression

@ Workaround for sensible non-factorial axes

heatregl <- 1m(FTnew ~ RT + FT,data=dat)

grd <- expand.grid(RT=sort(unique(dat$RT)),
FT=sort (unique (dat$FT)))

grd$pred <- round(predict(heatregl, newdata=grd),0)

grd2 <- xtabs(pred ~ FT + RT,grd)

heatrows <- rep("",300)

heatrows[seq(1,300,40)] <- rownames(grd2) [seq(1,300,40)]
heatcols <- rep("",300)

heatcols[seq(1,300,40)] <- colnames(grd2) [seq(1,300,40)]

heatmap.2(grd2,Rowv=F,Colv=F,trace="none",
labRow=heatrows,labCol=heatcols,srtCol=0,

xlab="RT",ylab="FT")

179/ 264

Continuous Data Relations between Continuous Variables

Heat Maps: Multiple Regression

Color Key
a)

Count
0 8000

—2e+05
Value

1616

2305

2459

2602

FT

2714

2871

3031

1279 1431 1514 1596 1736 1902 2116

RT

180/ 264

Continuous Data Relations between Continuous Variables

Heat Maps: Multiple Regression

@ Make the y-axis increasing instead of decreasing
heatregl <- 1lm(FTnew ~ RT + FT,data=dat)

grd <- expand.grid(RT=sort(unique(dat$RT)),
FT=sort (unique (dat$FT)))

grd$pred <- round(predict(heatregl, newdata=grd),0)

grd2 <- xtabs(pred ~ FT + RT,grd)

grd2 <- grd2[order(rownames(grd2),decreasing=T),]
heatrows <- rep("",300)

heatrows[seq(1,300,40)] <- rownames(grd2) [seq(1,300,40)]
heatcols <- rep("",300)

heatcols[seq(1,300,40)] <- colnames(grd2) [seq(1,300,40)]

heatmap.2(grd2,Rowv=F,Colv=F,trace="none",
labRow=heatrows,labCol=heatcols,srtCol=0,
xlab="RT",ylab="FT")

181 /264

Continuous Data Relations between Continuous Variables

Heat Maps: Multiple Regression

Color Key
a)

Count
0 8000

—2e+05
Value

3496

2080

2814

2653

FT

2549

2404

2202

1279 1431 1514 1596 1736 1902 2116

RT

182 /264

Continuous Data Relations between Continuous Variables

Heat Maps: Multiple Regression

Color Key
ar

Count
0 8000

-2e+05
Value

s

2900

2814

2653

FT

2509

datSFTnew

3500

dat$FT

2004

202

16405 0e+00 1e+05 2e+05 3e+05 4e+05 5e+05 Ge+05

Yo w0 w0 1m0 200 2200

dat$RT

RT

183 /264

Continuous Data Relations between Continuous Variables

Heat Maps: Continuous interactions

@ Just change the regression model: + to *

heatregl <- 1lm(FTnew ~ RT * FT,data=dat)

grd <- expand.grid(RT=sort (unique(dat$RT)),
FT=sort (unique (dat$FT)))

grd$pred <- round(predict(heatregl, newdata=grd),0)

grd2 <- xtabs(pred ~ FT + RT,grd)

grd2 <- grd2[order(rownames(grd2),decreasing=T),]
heatrows <- rep("",300)

heatrows[seq(1,300,40)] <- rownames(grd2) [seq(1,300,40)]
heatcols <- rep("",300)

heatcols[seq(1,300,40)] <- colnames(grd2) [seq(1,300,40)]

heatmap.2(grd2,Rowv=F,Colv=F,trace="none",
labRow=heatrows,labCol=heatcols,srtCol=0,

xlab="RT",ylab="FT")

184 /264

Continuous Data Relations between Continuous Variables

Heat Maps: Continuous interactions

Color Key
a)

Count
15000

0

—-4e+05 4e+05
Value

3496

2080

2814

2653

FT

2549

2404

2202

1279 1431 1514 1596 1736 1902 2116

RT

185/ 264

Continuous Data

Color Key
al

Gount
15000

0

-4e+05 4e+05
Value

3496

2000

2814

2653

202

1279 ey 1514 1595 e 1902 26

RT

FT

Relations between Continuous Variables

Heat Maps: Continuous interactions

1400 1600 180

0 2000 2200
Co

60+005

40+005

2e+005

2e+005 |

dat§

3500 N\
3000 b |

2500 -

2000

186/ 264

Continuous Data Relations between Continuous Variables

Heat Maps: Multiple Regression

@ All these heat maps also work if one or both predictor variables are
factors
heatreg2 <- 1m(FT ~ RT*condition,data=dat)

grd <- expand.grid(RT=sort (unique(dat$RT)),
condition=levels(dat$condition))

grd$pred <- round(predict(heatreg2, newdata=grd),0)

grd2 <- xtabs(pred ~ condition + RT,grd)

heatrows <- rep("",300)

heatcols[seq(1,300,40)] <- colnames(grd2) [seq(1,300,40)]
heatmap.2(grd2,Rowv=F,Colv=F,trace="none",

labCol = heatcols,xlab="RT",main="FT by RT and condition")

187 /264

Continuous Data

Heat Maps: Multiple Regression

=
3

3

al

Color Key

2200 3000
Value

1279

FT by RT and condition

9 < o " o
3 g 8 g g
RT

2116

Relations between Continuous Variables

2

188 / 264

Continuous Data Relations between Continuous Variables

Heat Maps: Multiple Regression

aaor Key RT*condition effect plot
s FT by RT and condition condition
- Fip—
2200 3000 3
Value 1
3200

3000 o L
2800 o L

FT

2600 | L
2400 | L
3 2200 | L
° g 5 g g o o I | TR W
| E : : : * 3 1400 1600 1800 2000
RT RT

189/ 264

Continuous Data Relations between Continuous Variables

Heat Maps and Surface Plots: The mgcv package

@ The mgcv package makes these plots way easier

@ Load the package:
library (mgcv)

190 / 264

Continuous Data

Relations between Continuous Variables

Heat Maps and Surface Plots: The mgcv package

nlintl <- gam(FTnew ~ RT + FT ,data=dat)
vis.gam(nlint1)

7
77

Jo1oipaid yeaul

RT

191 /264

Continuous Data Relations between Continuous Variables

Heat Maps and Surface Plots: The mgcv package

nlintl <- gam(FTnew ~ RT + FT ,data=dat)
vis.gam(nlintl,plot.type="contour")

linear predictor

3500

350000

3000
250000

FT
2500

2e+05

2000

1400 1600 1800 2000

192 /264

-
R
ARk
% N\

N

Rk

KRR
N

N

=dat)

The mgcv package
RT

Relations between Continuous Variables

Continuous Data

linear

]
P
o]
o)
[
£ 8
*
T
o]
2
=
o
=}
=
F
N
ap
|
\4
N
P
a
-
—
a

0
his}
o
(ol
()
O
©
(S
p -
u ~
(0p)] N
g
=
—
© =
S A
o g
] 80
M %)
-
- >
©
O
I

193 /264

Continuous Data Relations between Continuous Variables

Heat Maps and Surface Plots: The mgcv package

nlint2 <- gam(FTnew ~ RT * FT ,data=dat)
vis.gam(nlint2,plot.type="contour")

linear predictor

FT
3000 3500

2500

2000

1400 1600 1800 2000

RT
194 / 264

Continuous Data

Relations between Continuous Variables

Heat Maps and Surface Plots: The mgcv package

o With the mgcv package, we can even plot non-linear interactions:

nlint3 <- gam(FTnew ~ te(RT,FT) ,data=dat)
vis.gam(nlint3)

Jojoipad seault

RT

195 / 264

Continuous Data Relations between Continuous Variables

Heat Maps and Surface Plots: The mgcv package

nlint3 <- gam(FTnew ~ te(RT,FT) ,data=dat)
vis.gam(nlint3,plot.type="contour")

linear predictor

3500
3e+05—

350000 —
4e+05 —
450000 —

Se+05—

3000

FT

550000 -

2500

2000

1400 1600 1800 2000

RT

196 / 264

Continuous Data Relations between Continuous Variables

Heat Maps and Surface Plots: The mgcv package

@ Alternative option: plot() on the gam() object nlint3 <-
gam(FTnew ~ te(RT,FT) ,data=dat)
plot(nlint3,scheme=1)

197 / 264

Continuous Data Relations between Continuous Variables

Heat Maps and Surface Plots: The mgcv package

nlint3 <- gam(FTnew ~ te(RT,FT) ,data=dat)
plot(nlint3,scheme=2)

te(RT,FT,10.4)

“—350000—___|

3000

=_____ ' .
T—3ews |

F
2500

ders———— 1 L
— 250000 __\
—— 250000 —

2000

T T T
1400 1600 1800 2000

RT

@ Call the help function ?plot.gam() for more options 198264

Continuous Data Relations between Continuous Variables

Multiple Regression: More complex models

@ Sometimes, regression models include a higher number of terms, such
as
RT ~ predl*pred2 + pred2*pred3 + pred4 + predb

@ All of the plotting functions presented can handle these cases and
"pick out” the effects of interest, for example by

e Specifying term in the effect () function
e Specifying view in the vis.gam() function
e Specifying select in the plot () function for gam() objects

199 /264

Plotting Data vs. Analyses

Plotting Data vs. Analyses

200 / 264

Plotting Data vs. Analyses

Plotting Data vs. Analyses

@ In some plots, we are plotting descriptive summaries of the data

°
° 3 —{Condition
i 8
° :
8 | :
S :
) E g
8 |
I
7 3
o - E
8 | : £
8 —_ : @
- ' ; £
H ! F 9
| - > 24
° | . £ N
—_ £
8 | T 7}
H w
' °
' 8 |
8 T - 8
S i
= ;
T T T T T T T
1 2 3 1400 1600 1800 2000

Starting Time (ms)

201 /264

Plotting Data vs. Analyses

Plotting Data vs. Analyses

@ In some plots, we are plotting the results of analyses

Color Key

RT*condition effect plot a

condition
1

Count
0 15000

2
3

-4e+05 4e+05
Value

3200

3000

2800

FT

2600

2400

2200

TR] S
1400 1600 1800 2000
RT

RT

202 /264

Plotting Data vs. Analyses

Plotting Data vs. Analyses
@ In some plots, we are plotting both

te(RT,FT,10.4)

3500
I

g g
7 8 @
£
o
E -
F g S
o w (=3
2 2 &
z
g
£
o
o
g g
N ~
T T T T T T T T
1400 1600 1800 2000 1400 1600 1800 2000
Starting Time (ms) RT

203 / 264

Plotting Data vs. Analyses
Plotting Data vs. Analyses

@ Every plot should serve a purpose, so you have to choose between
these options in every case

204 /264

Plotting Data vs. Analyses

Plotting Data vs. Analyses

@ Every plot should serve a purpose, so you have to choose between
these options in every case

@ Although plotting both data and analyses seems the overall best way,
the data sometimes makes this difficult:

Q
8
8 g
© 38
S
3
B
=]
S
7 8 %
< £ 8
S
g g g
E g =
2 7 2
5 £z
2)
£ £ o
[T
<]
S I
s
S
&
T T T T ° T T T T
1400 1600 1800 2000 1400 1600 1800 2000
Starting Time (ms) Starting Time (ms)

204 /264

Plotting Data vs. Analyses

Plotting Data vs. Analyses

RT effect plot

8 5500 L
S
3
2
2 o
b § . 5000 - I~
£ =2
= x
2 n /
£
2
£
- 4500 4 L
3
° T T T T 4000 L
1400 1600 1800 2000 L1ty ! I LN R
1400 1600 1800 2000
Starting Time (ms) RT

@ Always tell your reader/audience what they are seeing
@ This is what figure captions are for

205 / 264

Plotting Data vs. Analyses
Error Bars

@ A prime example for this issue are standard factorial designs with a
continuous dependent variable (for example 2x2 design for RTs)

o Let's look at different ways to plot this

206 / 264

Plotting Data vs. Analyses
Error Bars

@ Line Plot of means:
bargraph.CI(x.factor=dat$condition,group=dat$time,
response=dat$RT,ylim=c(1400,2000) ,col=c("blue", "magenta"))

- T1
—— T2

fun of response

1400 1500 1600 1700 1800 1900 2000

1 2 3

x.factor 207 /264

Plotting Data vs. Analyses
Error Bars

@ Line Plot of means (aggregated data):
agg <- aggregate(RT ~ condition + time + participant,
data = dat,mean)
lineplot.CI(x.factor=agg$condition,group=agg$time,
response=agg$RT,ylim=c (1400,2000) ,col=c("blue", "magenta"))

!
—— T2

fun of response

1400 1500 1600 1700 1800 1900 2000
Il

x.factor 208 /264

Plotting Data vs. Analyses

Error Bars

@ Line Plot of means (raw vs. aggregated data):

- Tl
—— T2

- T
—— T2

fun of response
1400 1500 1600 1700 1800 1900 2000
|

fun of response
1400 1500 1600 1700 1800 1900 2000
1

1 2 3 1 2 3

x.factor x.factor

209 / 264

Plotting Data vs. Analyses
Error Bars

@ Line Plot of means (data aggregated over items):
agg?2 <- aggregate(RT ~ condition + time + item,
data = dat,mean)
lineplot.CI(x.factor=agg2$condition,group=agg2$time,
response=agg2$RT,ylim=c (1400,2000) ,col=c("blue", "magenta"))

- -~ T1
J = T2

fun of response

1400 1500 1600 1700 1800 1900 2000
Il

1 2 3

x.factor 210 /264

Plotting Data vs. Analyses

Error Bars

@ Line Plot of means (aggregated over participants vs. items):

- Tl

i - T1
— T2

— T2

fun of response
1400 1500 1600 1700 1800 1900 2000
|

fun of response
1400 1500 1600 1700 1800 1900 2000
1

1 2 3 1 2 3

x.factor x.factor

211/ 264

Plotting Data vs. Analyses
Error Bars

@ Line Plot of model predictions:
modell <- lmer(RT ~ condition*time +
(condition*time|participant), data=dat)
plot(effect("condition*time" ,modell),lines=1list (multiline=TRUE)
confint=list(style="bars"))

condition*time effect plot
time

T1 o T2

1900 - r

1800 - r

1700 r

RT

1600 - L

1500 - r

1400 +— T —
1 2 3

condition 212/ 264

Plotting Data vs. Analyses

Error Bars

@ Line Plot of means (raw data vs. model predictions):

condition*time effect plot

time
T o T2
8
S
&
° 1900 [
8 L
= — T2
o
" 8 1800 - [
a 3
2
2 g
8 3
e S - 1700 [
5 @
5 8
2 2 -
e 1600 r
g |
3
E
1500 [
8
S
N ’ 3 1400 ; —
1 2 3
x.factor condition

213 /264

Plotting Data vs. Analyses
Error Bars

@ In this case, the plots are all very similar, but they display different
things!

@ Be clear about that

214 /264

Plotting Data vs. Analyses
Error Bars

o For repeated-measures designs (one participant/item in more than
one condition), adjustments to the error bars have been suggested:

@ See for example

Loftus, G. R., & Masson, M. E. (1994). Using confidence intervals in
within-subject designs. Psychonomic Bulletin & Review, 1, 476-490.

Cousineau, D. (2005). Confidence intervals in within-subject designs:
A simpler solution to Loftus and Masson's method. Tutorials in
Quantitative Methods for Psychology, 1, 42-45.

215 /264

Stepwise Plotting

Stepwise Plotting

216 /264

Stepwise Plotting
Stepwise Plotting

@ Up to now, most plots were handled in a single command, and then
adjusted in the options

@ Let's check the alternative way: Starting from an empty plot and add
everything piece by piece

o Takes longer, but gives most control

217 /264

Stepwise Plotting

Stepwise Plotting: Line Plot with Error Bars

e Empty Plot
plot(0,type="n",axes=F,x1lim=c(0.5,3.5),ylim=c(1400,2000),
xlab="Condition",ylab="RT")

@ x1im and ylim options are very important here: They define the
window to be plotted

RT

Condition
218 /264

Stepwise Plotting
Stepwise Plotting: Line Plot with Error Bars

o Add the y-axis:

axis(2)

RT

1400 1500 1600 1700 1800 1900 2000
|

Condition

219 /264

Stepwise Plotting
Stepwise Plotting: Line Plot with Error Bars

@ Add the x-axis:

axis(1l,at=1:3,labels=c("1","2","3"))

RT
1400 1500 1600 1700 1800 1900 2000

Condition

220 /264

Stepwise Plotting
Stepwise Plotting: Line Plot with Error Bars

o Add a box:

box ()

RT
1400 1500 1600 1700 1800 1900 2000
1

Condition

221 /264

Stepwise Plotting
Stepwise Plotting: Line Plot with Error Bars

@ Add points for T1:

means <- aggregate(RT condition + time,data=dat,mean)
e <- .05

points(x=(1:3 - e),y=means[means$time == "T1",]$RT,
pch=16,col="blue")

RT
1400 1500 1600 1700 1800 1900 2000

Condition 222 /264

Stepwise Plotting
Stepwise Plotting: Line Plot with Error Bars

@ Add points for T2:

points(x=(1:3 + e),y=means[means$time == "T2",]$RT,
pch=16,col="magenta")

RT
1400 1500 1600 1700 1800 1900 2000

Condition

223 /264

Stepwise Plotting
Stepwise Plotting: Line Plot with Error Bars

@ Add lines for T1:

lines(x=(1:3 - e),y=means[means$time == "T1",]$RT,
lty=2,col="blue")

RT
1400 1500 1600 1700 1800 1900 2000

Condition

224 /264

Stepwise Plotting
Stepwise Plotting: Line Plot with Error Bars

@ Add lines for T1:

lines(x=(1:3 - e),y=means[means$time == "T1",]$RT,
lty=2,col="blue")

RT
1400 1500 1600 1700 1800 1900 2000

Condition

225 /264

Stepwise Plotting
Stepwise Plotting: Line Plot with Error Bars

@ Add lines for T2:

lines(x=(1:3 + e),y=means[means$time == "T2",]$RT,
1ty=2,col="magenta")

RT
1400 1500 1600 1700 1800 1900 2000

Condition

226 /264

Stepwise Plotting

Stepwise Plotting: Line Plot with Error Bars

e Compute standard errors (function se is part of the sciplot
package) and attach them to the object containing the means:

means$se <- aggregate(RT ~ condition + time,data=dat,se)$RT

o Compute M + SE and M — SE:

means$seplus <- means$RT + means$se
means$seminus <- means$RT - means$se

227 /264

Stepwise Plotting
Stepwise Plotting: Line Plot with Error Bars

@ Draw error bars as arrows:

arrows (x0=(1:3-¢e) ,x1=(1:3-¢e),
yO=means [means$time == "T1",]J$RT,
yl=means [means$time == "T1",]$seplus,
col="blue",angle=90,length=.1)

o
S |
o
N
o
g 4 Er
~ o
o
S |
0
]
o
= o |
o ~
]
o S
& 1 T
] IR
o
o |
n
- .
.
o
o
3
T T T
1 2 3

Condition 228 /264

Stepwise Plotting
Stepwise Plotting: Line Plot with Error Bars

@ Draw error bars as arrows:

arrows (x0=(1:3-¢e) ,x1=(1:3-¢e),

yO=means [means$time == "T1",]J$RT,
yl=means [means$time == "T1",]$seminus,
col="blue",angle=90,length=.1)

o
Q
=1
3
o
=3 k)
3 A
=1
o L
Q
@
=1
o
= S
o o~
- .
@
g JEs
° .
o |
D
9 »
o ¥
[=
3
T T T
1 2 3

Condition 229 /264

Stepwise Plotting
Stepwise Plotting: Line Plot with Error Bars

@ Draw error bars as arrows:

arrows (x0=(1:3+e) ,x1=(1:3+e),
yO=means [means$time == "T2",]$RT,
yl=means [means$time == "T2",]$seplus,
col="magenta",angle=90,length=.1)

o
Q
o
N
o
o g
@ Pans
=1 S
o o
Qo
0
3
o
= o |
x = ,
— .
8 Pl
B I7
° .
o |
w .
= J
o Koy
o
3
T T T
1 2 3

Condition 230 / 264

Stepwise Plotting
Stepwise Plotting: Line Plot with Error Bars

@ Draw error bars as arrows:

arrows (x0=(1:3+e) ,x1=(1:3+e),

yO=means [means$time == "T2",]$RT,
yl=means [means$time == "T2",]$seminus,
col="magenta",angle=90,length=.1)

o
Q
=1
3
o
8 A
o ;
=1
o L
Q
@
=1
o
= S
o o~ ,
- .
@ A
= g
° T
o |
D -
-
° K
[=
3
T T T
1 2 3

Condition 231 /264

Stepwise Plotting
Stepwise Plotting: Line Plot with Error Bars

o Add a legend:
legend("topleft",pch=16,1ty=2,
col=c("blue","magenta"),legend = c("T1","T2"),title = "Time")

o
S - Time
S
- T1
S |+ T2
g KER
= S
(=} o
s
)
=
= 8 |
x = X
- .
5
E A
°
s
o) -
-
o R
o
<
- T T T
1 2 3
Condition

232 /264

Stepwise Plotting

Stepwise Plotting: Other graphical elements

segments ()
abline()
rect ()
polygon()

Line segments between pairs of points
A line with slope and intercept
Rectangles (can be used for Bar Plots)
Polygons

233 /264

Controlling Graphical Parameters

Controlling Graphical Parameters

234 /264

Controlling Graphical Parameters
Controlling Graphical Parameters

@ Graphical parameters are adjusted globally, using the par() function
@ They will affect every subsequent plot

@ To reset par() to "factory settings”, use the function dev.off ()
(without argument), which will close the plotting device

235 / 264

Controlling Graphical Parameters
Controlling Graphical Parameters

@ There are many, many graphical parameters that can be changed
@ See 7par

o We will only deal with the most common ones here

236 / 264

Controlling Graphical Parameters

Controlling Graphical Parameters: Margins

. Line 3
Margins Line 2
par{mar=c(b,l,1,r)) Ling 1
Line 0
=
-
> Plot
=
o
T T T T T T
0 2 4 6 8 10
X
Line 0 .
Lins 1 Outer Margin Area
Line 2 par{oma=c(b,l.t,r}}

237 / 264

238 / 264

1800 2000
dat$RT

1600

1400

00S€ 000€ 00s¢ 000¢

1d$rep

Controlling Graphical Parameters

@ par(oma=c(1,2,3,4))
plot(datRT,datFT)

%]
=
o0
—
9]
=
n
—
Q
)
o
£
L]
—
(T
o
“©
9
=
o
(L]
—
O
o0
=
Ke)
=
)
(=
(@)
O

Controlling Graphical Parameters

Controlling Graphical Parameters: Margins

@ par (mar=c(1,2,3,4))
plot (datRT,datFT)

8
B] °
°
°
é o °
° o ° o °
® o
°
° o o °
o 8
=} ° 1 ° o °
- ° ° o ° 9 o
Q ° ® oo o & 00
™ o o ° g o
o e° 000 o o
0o & o ° 0p0® %o
og °@
o o % ° @ ° °
° ioﬂ"u"e o
o oo §°° sucn‘bu 0%
of B o °8% o S
8 o o 8 oo
o &0 S o 0090 %
S %o o9 ©o0 ° °
rel o 0 % oo © LY o
~ ® 0, & A P
° 8 o , 0080 °
° §_038 8o °
© o ©° %00 o ® °
o ° T, 0%
o g0 °
° &% oo _©
o o © °
° o
o o0 .
Q 4 o
S ° °
« o
° o
°

239 / 264

Controlling Graphical Parameters

Controlling Graphical Parameters: Margins

@ par(mai=c(0,1,2,3))
plot (datRT,datFT)

dat$FT
3000 3500
1 Il
O ?
S

b B¥0 8°

008 30 °® 2
® &Ko

S Mool

2500

2000
g

240 / 264

Controlling Graphical Parameters

Controlling Graphical Parameters: Character Size

@ par(cex=.5)
plot (datRT,datFT)

T T T T
1400 1600 1800 2000

241 / 264

|-
i)
S
o)
S N
o
O ° 0%
— o, © o K
@ 00 o o
g o g o
O © Tagen
0 ek SR
b
° ° g0
RN
— 0 0o2% o
() .° wwo 390 soo
-+ ° mwbw m%oomnw wwco
m o4 o&oo&oooaoo.% o
5 E o o&naooneaoo ° o
f RERELE 8 AR
o BN
& @© R S R
m o wﬁo .
= ~ o o
8
5 (o] [l T T T T
w O 5 00S€ 000E 0052 0002
£ = 2
= h ~
[<] -
£ o = % 14$rep
o -
s @ o
() H o~
.gmw
o0 T
(] ap o
= Q
= Z b
A 4 O
2 < -
=l o o
c ()
S

1600 1800 2000

1400

dat$RT

242 / 264

Controlling Graphical Parameters

o par(mfrow=c(2,3))

for (i

dat$FT

datsFT

in 1:6)plot(dat$RT

2500 3000 3500

2000

2500 3000 3500

2000

3500

3000

3500

3000

s s
e 8 e 8
T T T T T T T T
1400 1600 1800 2000 1400 1600 1800 2000 1400 1600 1800 2000
datsRT datsRT datsRT
s s
¢ 8 ¢ 8

2000

2000

T T
1400 1600 1800 2000

datsRT

T T T T
1400 1600 1800 2000

datsRT

T T T T
1400 1600 1800 2000

datsRT

243 / 264

Controlling Graphical Parameters

Multiple Graphs: More fine-tuning

@ Define the Frame:

zones=matrix(c(2,0,1,3), ncol=2, byrow=TRUE)

layout (zones, widths=c(.75,.25), heights=c(.25,.75))
par(oma=c(1,1,1,1))

par (mar=c(1,1,1,1))

@ Inspect zones

zones
[,11 [,2]

(1,] 0
[2,] 1 3

244 /264

Controlling Graphical Parameters

Multiple Graphs: More fine-tuning

@ Prepare two histograms:

xhist <- hist(dat$RT,plot=FALSE)
yhist <- hist(dat$FT,plot=FALSE)
top <- max(c(xhist$counts, yhist$counts))

245 /264

Controlling Graphical Parameters

Multiple Graphs: More fine-tuning

@ Plot all three graphs:
plot(datRT,datFT)
barplot(xhist$counts, axes=FALSE, ylim=c(0, top), space=0)
barplot(yhist$counts, axes=FALSE, xlim=c(0, top), space=0,
horiz=TRUE)

3000 3500
I I

2500
I

2000
I

T T T
1400 1600 1800 2000

246 / 264

Colors

Colors

247 /264

Colors
Colors

@ As we have seen throughout the course, there are a lot of standard
colors that can be accessed by name

@ For an overview, see
http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf

248 /264

http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf

Colors
Colors

@ Additional colors can be customized using the rgb() function

rgb(1,1,1)

@O

rgb(0,1,1)
rgbh(1,0,1)
rgb(1,1,0)
rgb(0,0,1)
rgb(0,1,0)
rgb(1,0,0)

rgh(0,0,0)

000000

@ use rgb(...,maxValue=255) for the standard 255 scale

249 /264

Colors

Colors

@ Use the alpha option to adjust parameters

rgb(1,0,0,alpha=0) O
rgb(1,0,0,alpha=.25) O
rgb(1,0,0,alpha=.5) Q
rgb(1,0,0,alpha=.75) .
rgb(1,0,0,alpha=1) .

250 / 264

Colors

Colors

@ Use a pre-defined color palette:
cols <- rainbow(100)

cols[100]
cols[90]
cols[80]
cols[70]
cols[60]
cols[50]
cols[40]
cols[30]
cols[20]
cols[10]

cols[1]

00000000000

251 /264

Colors

Colors

@ Use a pre-defined color palette:
cols <- terrain.colors(100)

cols[100]
cols[90]
cols[80]
cols[70]
cols[60]
cols[50]
cols[40]
cols[30]
cols[20]
cols[10]

cols[1]

00000000000

252 /264

Colors

Colors

@ Use a pre-defined color palette:
cols <- topo.colors(100)

cols[100]
cols[90]
cols[80]
cols[70]
cols[60]
cols[50]
cols[40]
cols[30]
cols[20]

cols[10]

00000000000

cols[1]
253 /264

Colors

Colors

@ Use a pre-defined color palette:
cols <- heat.colors(100)

cols[100]
cols[90]
cols[80]
cols[70]
cols[60]
cols[50]
cols[40]
cols[30]
cols[20]
cols[10]

cols[1]

0000000 OCO0O0

254 /264

Colors

Colors

@ Use a pre-defined color palette:
cols <- cm.colors(100)

cols[100]
cols[90]
cols[80]
cols[70]
cols[60]
cols[50]
cols[40]
cols[30]
cols[20]
cols[10]

cols[1]

CO0O00OOOO000®

255 /264

Colors

Colors

@ Create your own color palette:
cols <- colorRampPalette(c("red","white","green")) (100)

cols[100]
cols[90]
cols[80]
cols[70]
cols[60]
cols[50]
cols[40]
cols[30]
cols[20]

cols[10]

00000000000

cols[1]
256 / 264

Colors
Colors

e For more information (also on the RColorBrewer package), see
https://www.stat.ubc.ca/~jenny/STAT545A/blockl4_colors.html

257 /264

https://www.stat.ubc.ca/~jenny/STAT545A/block14_colors.html

Exporting Plots

Exporting Plots

258 / 264

Exporting Plots

Exporting Plots

@ In RStudio, plots can be exported by clicking on " Export”

Files =C
¥ ‘% publish ~
8
%7 o
oo
& o °
° o 0 gof o
o @
o o
=) g °
g 1 v o 8% o % ° °3’<§gog, ® 00’
< o
o0 °© 8% g o 0o ae % ©
o o 850 @ o e °
0 0%, 0 FXTHS @,
So o Do 300
=) G 8 o0 o, o o 80 g
g | A% Sogeo o o o %
o o o X5, ° b
& o0 @y oo Ooéigooec K °
§ w® o838 00 ® o °
w3 & o %o
o
o 0%00 X3 °
s % o o
o0 ¢ o
= & o
84 ° o o
& %0
° o
-
T T T T
1400 1600 1800 2000

259 / 264

Exporting Plots
Exporting Plots

@ Plots can also be exported using R commands:

pdf ("C:/User/Documents/myplot.pdf")
plot(datRT,datFT)
dev.off ()

o Everything between opening the device with pdf () and closing it with
dev.off () is exported

260 / 264

Exporting Plots
Exporting Plots

@ Adjusting the size of the plot:

pdf ("C:/User/Documents/myplot.pdf",width=5,height=5)
plot(datRT,datFT)
dev.off ()

@ The size of characters and symbols will depend on the figure size
(smaller symbols with larger sizes)

261 /264

Exporting Plots
Exporting Plots

@ There are many other options that can be specified while exporting:
font style, point size, background and foreground color, ...

@ And also other file formats:

Raster images
o png("myplot.png")

o jpeg("myplot.jpeg")
e bmp("myplot.bmp")

Vector Graphics
e pdf ("myplot.pdf")

e postscript("myplot.ps")

o win.metafile("myplot.wmf")

262 /264

Exporting rgl graphs

o Rotatable 3D-Plots created with the rgl package are exported as
follows:

o Create the rgl graph
data(volcano)
persp3d(x=1:nrow(volcano) ,y=1:ncol(volcano) ,z=volcano)

e Turn them to the position you want to export (can also be done using
commands, see ?7view3d)

e Call rgl.snapshot(filename="snapshot.png") or
rgl.postscript (filename="rgl2.pdf",fmt="pdf") (also supports
ps, eps, tex, svg, pgf)

263 / 264

Exporting rgl graphs

@ You can also export animations as .gifs, using commands such as
movie3d(spin3d() ,movie="mygif-",duration=12,dir=getwd())

@ This requires the package magick to be installed
@ To also export all the individual .png files used to create the .gif, use

movie3d(spin3d() ,movie="mygif-",duration=12,
dir=getwd () ,clean=F)

264 /264

	R - Some Basics
	Discrete Data
	Frequencies and Distributions

	Continuous Data
	Frequencies and Distributions
	Relations between Continuous Variables

	Plotting Data vs. Analyses
	Stepwise Plotting
	Controlling Graphical Parameters
	Exporting Plots
	Colors

