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Modelling mental representations
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Introduction

▶ What is a tower?

▶ Where did you get this information from?
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What are “representations”?

▶ We can’t store/manipulate things “in our head”, just
representations of them

▶ Representation as “an encoding of some information, which
an individual can construct, retain in memory, access, and use
in various ways” (Smith, 1998)
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What are “representations”?

▶ What is our representation of
▶ LION

▶ WORLD

▶ FAITH

▶ DIFFERENCE

▶ Can we measure representations?

▶ We can’t observe these representations directly, but have to
infer them
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Modelling representations

▶ How do we go scientific about representations?

▶ We need objective, quantitative models:
“The problem of hand-coded representations is the most
serious problem facing computational modeling as a scientific
enterprise. All models are sensitive to their representation, so
the choice of representation is among the most powerful
wildcards at the modeler’s disposal.” (Hummel & Holyoak, 2003)
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Inferring representations from behavioral data/ “the
outcome level”

Westbury, 2016

▶ Popular method
(e.g., de Deyne et al., 2016; Kenett et al., 2017; Hebart et al., 2020)

▶ Collect behavioral data (for example, word similarity ratings or
free associations)

▶ Estimate the representational system that most likely produced
these data
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Inferring representations from the outcome level

▶ Problem: May be a good description, but does not offer an
explanation.
“One issue with all three of these classic models is that none
ever did actually learn anything.” (Jones, Willits, & Dennis, 2015)

▶ What exactly makes people think that Lion is more similar to
tiger than bathtub?

▶ Assumption: This is a function of our experience
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Building from experience:
Starting from the input level

▶ Aim: Build representations as a function of the input
experienced by the system

▶ “When the system, over the course of its life, encounters this
data, it will develop these representations”

▶ We need a lot of data to approximate this experience!
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Building representations from language experience
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Learning meaning from language experience:
A demonstration

What is a cataphract?

D1 In my opinion, the main goal of cataphracts was to fight
heavy infantries.

D2 Shapur II further reformed the army by adopting heavier and
more effective cataphract clad in thick iron plates which
covered their entire body.

D3 These cataphracts specialised in forming a wedge
formation and penetrating enemy formations to create gaps,
enabling lighter troops to make a breakthrough.

D4 Nations in the East occasionally fielded cataphracts
mounted on camels rather than on horses .
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Learning from language experience:
A demonstration

knight can be used in the same contexts as cataphract!

D1 In my opinion, the main goal of knights was to fight heavy
infantries.

D2 Shapur II further reformed the army by adopting heavier and
more effective knights clad in thick iron plates which
covered their entire body.

D3 These knights specialised in forming a wedge formation and
penetrating enemy formations to create gaps, enabling lighter
troops to make a breakthrough

D4 Nations in the East occasionally fielded knights mounted on
camels rather than on horses
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The distributional hypothesis

Firth, 1957; Harris, 1954; Sahlgren, 2008

▶ Words with similar meanings occur in similar contexts

▶ You shall know a word by the company it keeps

13



Distributional semantic models

Landauer & Dumais, 1997; Lund & Burgess, 1996

▶ The passionate nurse treats patients in the hospital
▶ The passionate doctor treats patients in the hospital
▶ The doctor saved her patient
▶ A whale travels the ocean

Distributional vectors:

patient hospital ocean

nurse 1 1 0

doctor 2 1 0

whale 0 0 1
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Excursus: Vector algebra
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Excursus: Vector algebra
Vector space

patient hospital ocean
nurse 1 1 0
doctor 2 1 0
whale 0 0 1
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Excursus: Vector algebra
Cosine similarity

▶ cos(90◦) = 0.00

▶ cos(00◦) = 1.00

▶ more similar distribution
=⇒ smaller angle =⇒ larger cosine similarity 17



Excursus: Vector algebra
Cosine similarity

▶ We define the n nearest neighbors of a word as those n other
words (from a given lexicon) with the highest cosine similarity
to that word

18



Excursus: Getting familiar with R
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Excursus: Getting familiar with R

▶ When it comes to computational models, it usually makes
sense (and is more fun) to actually use them, not just hear
about them

▶ In addition to some web tools, we will also learn to use them
in the statistical computing environment R

▶ First, let’s get a basic understanding of R
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Excursus: Getting familiar with R
Installing R

▶ Go to: https://cran.rproject.org/

▶ Select the version of R according to your OS.

▶ Install. Default options will fit in most cases. I suggest you to
discard 32 bit files (if your OS is 64 bit) and message
translations (annoying when you try googling them).

21
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Excursus: Getting familiar with R
Installing Rstudio

▶ User interface that makes working with R easier

▶ Go to: https://www.rstudio.com/

▶ DO NOT go to: http://www.r-studio.com/ (this looks
like an expensive data recovery tool, unrelated to R)

▶ Products > Rstudio > Desktop > Download

22
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Excursus: Getting familiar with R
Rstudio and its windows
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Excursus: Getting familiar with R
Rstudio and its windows
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Excursus: Getting familiar with R
Using the R console

▶ Type 2 + 2*2 into the console and press ENTER

▶ Type 2ˆ2 into the console and press ENTER

▶ Type sqrt(9) into the console and press ENTER
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Excursus: Getting familiar with R
Using R scripts

▶ Click on “File > New File > R Script”

▶ Save it somewhere where you can find it, using “File > Save
As”

▶ In this file in the text editor
▶ Type 2 + 2*2

▶ Type 2ˆ2

▶ Type sqrt(9)

▶ Select everything (Ctrl+A) anc click on “Run” (the green
arrow) or use Ctrl+ENTER

31



Excursus: Getting familiar with R
Using R scripts

▶ Scripts are extremely useful: You can later open them again
and run the same analysis without having to type anything in
the console

32



Excursus: Getting familiar with R
Variables

▶ You can assign values to variables using
x < − 2

▶ You can pretty much use any variable name you like
topolino < − 2

▶ To see the value of a variable, simply write it and press
ENTER
topolino

▶ You can perform computations with variables
topolino + 4
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Excursus: Getting familiar with R
Functions

▶ Functions take an input (so-called arguments) and return an
output

▶ It’s all about the functions

▶ Simple case with one argument: sqrt(9)

▶ Here, sqrt() is the function and 9 is the argument

▶ You can chain functions:
sqrt(exp(9))

▶ You can save the output of a function as a variable
x < − sqrt(exp(9))
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Excursus: Getting familiar with R
Functions

▶ Functions can have multiple arguments that do different
things:

▶ Type
seq(from = 1, to = 10, by = 1)

▶ To see how a function works (incl. which arguments it takes,
which output it returns etc), type ?name of function, like
?seq
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Excursus: Getting familiar with R
Functions

▶ Many functions are not included in the base version of R, but
are provided in packages (written by other users)

▶ To install a package (here, the lsa package), simply type and
run:
install.packages("lsa")
(needs to be done only once)

▶ To access the functions of this package in an R session, use
library("lsa")
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Excursus: Getting familiar with R
Vector algebra

▶ To create a vector (ordered list of numbers), simply use the
c() function:
vec <- c(1,4,9)

37



Excursus: Getting familiar with R
Vector algebra

Now you!
▶ Create a vector called nurse: [1, 1, 0]

▶ Create a vector called doctor: [2, 1, 0]

▶ Compute their cosine similarity using the cosine() function
in the lsa package

38



Distributional Semantic Models
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Distributional semantic models

patient hospital ocean

nurse 1 1 0

doctor 2 1 0

whale 0 0 1

▶ Real DSMs are not built from a few sentences with a few
words

▶ Rather, built from large-scale language corpora that serve as
proxies for our language experience

▶ Real DSMs start with tens of thousands of rows and columns
=⇒ many high-dimensional vectors
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Distributional semantic models

patient hospital ocean

nurse 1 1 0

doctor 2 1 0

whale 0 0 1

▶ These are “raw count” vectors

▶ These raw counts are typically transformed further:
▶ weighting

▶ dimensionality reduction
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Distributional semantic models
Weighting

▶ Problem: Cell entries are usually high for frequent words, even
if they are not informative

▶ Example:

patient hospital medicine ocean the

nurse 45 22 37 0 1887

doctor 34 45 51 2 2003

whale 1 0 0 112 1654

▶ These vectors are all very similar (cos > .99!), just because
one entry is very large

42



Distributional semantic models
Weighting

▶ Counter-measure: Weighting of cell entries

▶ Possible option: Pointwise mutual information
PMI = P(a∧b)

P(a)·P(b)

▶ PMI is
▶ lower for higher base frequencies/probabilities of a and b alone

▶ higher the more often a and b occur together
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Distributional semantic models
Dimensionality reduction

▶ Problem: With large language corpora, the vectors become
very long (many columns)

▶ Many columns will provide redundant information (= be very
similar to other columns) – think of columns such as doctor,
physician, nurse, ...

▶ Many cell entries will be zero

▶ Counter-measure: Dimensionality reduction
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Excursus: Dimensionality reduction
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Excursus: Dimensionality reduction

▶ Dimensionality reduction is an important topic also in other
areas in psychology, such as diagnostics/personality
psychology (for example Big Five model)

▶ Assume you have a number of questions, do you get
independent information from each question, or are there
redundancies and fewer “underlying dimensions”?
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Excursus: Dimensionality reduction
▶ Do you need two dimensions to describe this pattern?
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Excursus: Dimensionality reduction
▶ Do you need two dimensions to describe this pattern?
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Excursus: Dimensionality reduction

Prinicipal component analysis (PCA)

▶ Identify the (orthogonal) principal components –
mathematical algorithm to find new “axes” for the data

▶ Keep only the principal components that you need

50
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Excursus: Dimensionality reduction

▶ Selecting the number of dimensions either by
▶ Keeping those that explain substantial variance (“internal

criterion”)

▶ Checking how many dimensions you need to explain other data
such as similarity judgments (“external criterion”)

▶ In DSMs, we typically end up with 300 - 400 dimensions

▶ Also called “latent semantic dimensions”
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Distributional semantic models
Dimensionality reduction

Landauer & Dumais, 1997

▶ Dimensionality reduction as transition from “episodic”
memory (= experience with concrete instances) to
“semantic” memory (= abstracted knowledge of concepts)

▶ Dimensionality reduction allows model to identify not only
first-order relations (= words that co-occur/occur in the
same context), but also higher-order relations (= words that
appear with other words [etc. ...] that appear in the same
contexts)
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Distributional Semantic Models
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Distributional semantic models

▶ Let’s have a look at some distributional vectors for words
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A note on nomenclature

▶ “Distributional semantic models” are known under different
names, most commonly
▶ Distributional semantics

▶ Vector space models of meaning

▶ Word embeddings

▶ Some people (mostly psychologists) will also just call them
LSA (Latent Semantic Analysis) – we will later see why

55



The LSA model
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Using DSMs I: The LSA homepage
Dennis, 2007

▶ Go to http://wordvec.colorado.edu/

▶ Using the LSA “General reading up to 1st year college” model
▶ Find the 20 nearest neighbors of “cat” and visualize them

▶ Calculate the cosine similarity between
▶ mouse – dog

▶ cat – rodent

▶ tea – tree

▶ Compute all pairwise similarities between
▶ mouse – rat – keyboard – cat

57
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Using DSMs I: The LSA homepage
Dennis, 2007

▶ Why the low similarity for “mouse - keyboard”?

→ the TASA corpus from which this specific instance of the
model was created from 1990s textbooks!

▶ Important: Note that corpus (= training data) and model (=
algorithm that derives representations from training data) are
two different things!!
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The LSA model

▶ LSA (Latent Semantic Analysis) is one particular DSM

▶ Became very popular in psychology in the late 90s (Landauer
& Dumais, 1997), so that for many psychologists
“distributional semantics” and “LSA” are synonymous

▶ Let’s look at how it works
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The LSA model

Step 1: The raw count data
▶ LSA starts from a term(= word)-by-document matrix

D1 The passionate nurse treats patients in the hospital

D2 The passionate doctor treats patients in the hospital

D3 The doctor saved her patient

D1 D2 D3

nurse 1 0 0

doctor 0 1 1

patient 1 1 1

hospital 1 1 0
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The LSA model

Step 2: Weighting
▶ LSA applies a co-called “log-entropy” weighting on the raw

counts

▶ Same purpose as PMI weighting discussed earlier:
▶ Reduce impact of very frequent words

▶ Focus on informative relations instead of raw co-occurrence
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The LSA model
Step 3: Dimensionality reduction via Singular Value Decomposition
(SVD)

▶ See previous discussion on dimensionality reduction (SVD is
very similar to Principal Component Analysis, but for
non-quadratic matrices)

▶ Special property of SVD on term-by-document-matrix:
We get term vectors and document matrix with the same
number of dimensions

▶ All of those can be compared to one another using cosine
similarity!!
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The LSA model

▶ The possibility to compare single words and whole documents,
or to compare two documents, makes LSA very interesting for
some purposes

▶ One can show that a vector of a document is the sum of all
its term vectors, so

−−−−−−→w1w2...wn = −→w1 + −→w2 + ... + −→wn

▶ We can also use this to get a representation for any new
document (phrase, sentence, ...) consisting of several words
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Using DSMs I: The LSA homepage

▶ Go to http://wordvec.colorado.edu/

▶ Using the LSA “General reading up to 1st year college” model
▶ Calculate the cosine similarity between

▶ A small black cat is sitting on my balcony

The mouse ate all my cheese

▶ cat

The mouse ate all my cheese
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The LSA model
Some applications

LSA has been successfully used for

▶ Document retrieval by query Manning, Raghavan, & Schütze (2008)

▶ Question answering Tellex, Katz, Lin, Fernandes, & Marton (2003)

▶ Sentiment analysis of documents Pang, Lee, & Vaithyanathan (2002)

▶ Assigning reviewers to academic papers Dumais & Nielsen (1992)

▶ Automatic essay grading
Foltz, Laham, & Landauer (1999); Lenhard, Baier, Hoffmann, & Schneider
(2007)
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The LSA model
Empirical evaluation as a cognitive model

LSA can predict a range of empirical phenomena

▶ Passes synonym tests at the same level as human
second-language speakers Landauer & Dumais (1997)

▶ Word categorization Laham (1997); Louwerse & Zwaan (2009)

▶ Lexical priming effects
Jones, Kintsch, & Mewhort (2006), Günther, Dudschig, & Kaup (2016a, 2016b)
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LSA and priming
An example study

Günther, Dudschig, & Kaup, 2016a, 2016b

▶ Aim: Control LSA cosine similarities as an independent
variable

▶ Model: LSA space from German corpus, ∼ 880 mio. words

▶ Item generation procedure:
1. Select the target words (medium frequency nouns)

2. Assign each target to a similarity range (.00 - .10, or .19 - .20,
etc.)

3. Sample a prime word from that similarity range (also medium
frequency nouns)
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LSA and priming
A study example

Günther, Dudschig, & Kaup, 2016a, 2016b

Item examples

prime target cosine

Butter (butter) Hochhaus (skyscraper) .08

Wirsing (savoy cabbage) Wanne (tub) .22

Hexen (witches) Tempel (temple) .47

Elster (magpie) Eule (owl) .72

Posaune (trombone) Flöte (flute) .91
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LSA and priming
A study example

+

1000 ms

Prime

500 ms 500 ms

Target

max. 3000 ms

Feedback

1000 ms

Löwe

Wense

−

−

JA

NEIN

Günther, Dudschig, & Kaup, 2016a, 2016b 69



LSA and priming
A study example

Günther, Dudschig, & Kaup, 2016a 70



LSA and priming
A study example

Günther, Dudschig, & Kaup, 2016b 71



Word-by-document versus word-by-word
models

72
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Sahlgren, 2008 73



Word-by-document versus word-by-word models

Sahlgren, 2008

We have now encountered two types of model:
▶ Those that start from word-by-document data (such as LSA)

D1 D2 D3

nurse 1 0 0

doctor 0 1 1

patient 1 1 1

hospital 1 1 0

▶ These tend to get similar representations for words that
appear together in the same documents

▶ Syntagmatic or Associative relations such as road – car
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Word-by-document versus word-by-word models

Sahlgren, 2008

We have now encountered two types of model:
▶ Those that start from word-by-word data

patient hospital ocean

nurse 1 1 0

doctor 2 1 0

whale 0 0 1

▶ These tend to get similar representations for words that are
surrounded by the same words = are interchangeable by one
another

▶ Paradigmatic or Semantic relations such as road – street
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Word-by-document versus word-by-word models

Lund & Burgess, 1996

▶ First famous word-by-word model: HAL (Hyperspace
Analogue to Language)

▶ Word counts as “appearing in the context of another word” if
it’s within the n (content) words before or after this word
(moving window)

▶ Example: n = 2
In addition to providing care and support, nurses educate the
public, and promote health and wellness.

addition care support educate public health

nurse 0 1 1 1 1 0
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Word-by-document versus word-by-word models

Jones, Kintsch, & Mewhort, 2006

▶ The literature on lexical priming reports
▶ Purely associative priming (road – car)

▶ Purely semantic priming (road – street)

▶ Jones et al. (2006):
▶ LSA (word-by-document) captures associative priming effects

▶ HAL (word-by-word) captures semantic priming effects

▶ With large corpora and general stimulus pairs, the models
however become very similar:
In Günther et al. (2016b), we find r = .89 between LSA and
HAL cosine similarities
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Word-by-document versus word-by-word models

Günther et al., 2016b

▶ With large corpora and general stimulus pairs (i.e., not
specifically selected for associative/semantic relations), the
models however become very similar:

▶ In Günther et al. (2016b), we find r = .89 and r = .91
between LSA and HAL cosine similarities for our 200
pseudo-randomly sampled pairs
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Word-by-document versus word-by-word models

Günther et al., 2016b

▶ With large corpora and general stimulus pairs (i.e., not
specifically selected for associative/semantic relations), the
models however become very similar:

▶ In Günther et al. (2016b), we find r = .89 and r = .91
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Count versus predict models
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Count versus predict models

Hollis, 2017; Mandera, Keuleers, & Brysbaert, 2017

▶ So far, we looked at models that start from counting how
often a word appears in a given context

▶ However, these are unrealisitic learning models:

▶ All raw “episodic” data has to be stored and transformed with
each new language input
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Count versus predict models

Hollis, 2017; Mandera, Keuleers, & Brysbaert, 2017; Mikolov et al., 2013

▶ Prediction models based on neural networks as incremental
learners of word representations
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Count versus predict models

Hollis, 2017; Mandera, Keuleers, & Brysbaert, 2017; Mikolov et al., 2013

▶ Prediction models based on neural networks as incremental
learners of word representations

82



Excursus: Neural Networks
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Excursus: Neural Networks

▶ In modern AI and machine learning, neural networks
essentially do everything

▶ Examples:
▶ https://www.deeparteffects.com/

▶ https://www.craiyon.com/

▶ https://www.deepl.com

▶ ... and many more
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Excursus: Neural Networks

Overview: Lanham, M. (2021). Generating a New Reality. Apress.
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Excursus: Neural Networks

Interviewer: Why should we hire you?

Applicant: I am an expert in machine learning.

Interviewer: So you’re good ad maths? What is 16 + 3?

Applicant: 4

Interviewer: That’s not even close, it’s 19!

Applicant: 13

Interviewer: Still too far, it’s 19!

Applicant: 18

Interviewer: No, 19!

Applicant: 19

Interviewer: You’re hired!
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Excursus: Neural Networks

▶ Nice overview about implementing neural networks in R can
be found here:
https://selbydavid.com/2018/01/09/neural-network/
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Excursus: Neural Networks

Lanham, 2021

▶ In their essence, neural networks are regression models:

▶ Their aim is to predict the velues of certain output variables
from certain input variables
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Excursus: Neural Networks

Lanham, 2021

▶ The basics: The perceptron

▶ Several input values, one output value
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Excursus: Neural Networks

Lanham, 2021

▶ Computing the output:
y = ∑

1 f (wi · xi) + bias
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Excursus: Neural Networks

Lanham, 2021

Simple case:
▶ Activation function is identity (f (x) = x)

▶ Bias is zero

▶ so y = ∑
1 wi · xi
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Excursus: Neural Networks

Lanham, 2021

▶ Neural networks can also predict multiple outcomes at the
same time from a set of predictors
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Excursus: Neural Networks

Lanham, 2021

▶ In that case, we have
yj = ∑

1 f (wi j · xi) + bias
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Excursus: Neural Networks

Lanham, 2021

Aim:
▶ Predict observed data as accurately as possible

▶ =⇒ Reduce loss/error to minimum

▶ Achieved by changing the weights
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Excursus: Neural Networks
Basic procedure

Lanham, 2021

▶ Start with random weights

▶ Training data consisting of complete input-output pairs is presented in
training cycles (in a stepwise manner, piece by piece)

▶ Compute error/loss

▶ In each cycle, weights are changed as a function of the loss/error:
larger adjustments for larger errors

▶ Repeat for n cycles (repeatedly through the entire training material) or
until weights no longer change substantially between the cycles
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Excursus: Neural Networks
Updating the weights: Backpropagation of errors

Lanham, 2021

▶ Often used: The Delta Rule (similar to Rescorla-Wagner
learning rule)

▶ (1) Compute difference between predicted and actual output:
(tj − yj)

▶ Adjust by a learning parameter α (fixed parameter for the
network):

α(tj − yj)

▶ Larger learning rate: Higher impact of error on change in
weights in each cycle
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Excursus: Neural Networks
Updating the weights: Backpropagation of errors

Lanham, 2021

▶ (3) Change in weight linking input xi to yj is this product
multiplied by input activation

∆wij = α(tj − yj) · xj

▶ This is the delta rule for linear activation functions; the
general case is a bit more complicated
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Excursus: Neural Networks
Updating the weights: Backpropagation of errors

Lanham, 2021

▶ Training continues until the changes in weights ∆wi j no
longer exceed a threshold value t. Every training cylce uses all
training items.
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Excursus: Neural Networks
Updating the weights: Backpropagation of errors

Lanham, 2021

▶ Training continues until the changes in weights ∆wij no
longer exceed a threshold value t. Every training cylce uses all
training items.
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Excursus: Neural Networks
Training neural networks yourselves

▶ If you want to get serious about using neural networks (which
are a great asset!), you should probably move to python:
▶ pyTorch

▶ tensorflow
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Excursus: Neural Networks
Training neural networks

Tutorials:
▶ The book by Lanham (2011) includes examples for every

chapter:
Lanham, M. (2021). Generating a New Reality. Apress.

▶ Building a neural network to classify colors from their RGB
code:
https://medium.com/analytics-vidhya/building-rgb-
color-classifier-part-1-af58e3bcfef7
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Excursus: Neural Networks
Categorical outcomes (classifiers)

Lanham, 2021

▶ So far, we have looked at neural networks predicting numbers
(continuous variable as output)

▶ More often than not, neural networks are used as classifiers:
To predict categorical variables (image labels, words in a
corpus, ...)
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Excursus: Neural Networks
Categorical outcomes (classifiers)

Lanham, 2021

▶ In the final layer, you have one neuron for each possible
outcome

▶ Values in the final layer: Probability of each possible outcome

▶ Values are usually converted into probabilities using softmax
(dividing by the sum of all values in the final layer)
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Excursus: Neural Networks
Categorical outcomes (classifiers)

Lanham, 2021

Let’s use neural network classifiers!
▶ https://playground.tensorflow.org/

▶ Aim: Predict class (blue vs orange) from X1 and X2 values

▶ Settings:
▶ Ratio of training data: 80 %

▶ Noise: 0

▶ Batch size: 10

▶ Enable “Show test data”

104

https://playground.tensorflow.org/


Excursus: Neural Networks
Categorical outcomes (classifiers)

Lanham, 2021

▶ Set the “hidden layers” to zero (we will talk about those in a
second)

▶ Use the third type of data (“Gaussian”, the two separate point
clouds)

▶ Use only X1 and X2 as features (i.e., input)

▶ How good does the performance get (in terms of loss?)
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Excursus: Neural Networks
Categorical outcomes (classifiers)

Lanham, 2021

▶ Now use the second data type (“Exclusive or”)

▶ How good does the performance get?

▶ What’s the problem here?

▶ How can you improve performance?

▶ Does that also work for data type “Spiral”?
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Excursus: Neural Networks
Hidden layers

Lanham, 2021

▶ The neural networks we discussed so far predict the output
directly from the input

▶ Remember that the influence of each input neuron is just the
activation in this neuron multiplied with a weight

▶ This means we can only get a linear influence of each input
neuron

▶ Which means we can’t capture non-linear relationships (like in
the “Spiral” data)
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Excursus: Neural Networks
Hidden layers

Lanham, 2021

▶ A neural network can include hidden layers between input and
output

▶ These take input from a set of neurons of the previous layer
(often all of them),
and give output to a set of neurons in the next layer (often all
of them)
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Excursus: Neural Networks
Hidden layers

Lanham, 2021

▶ Hidden layers allow the network to capture very complex
(non-linear) relations between input and output
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Excursus: Neural Networks
Hidden layers

Lanham, 2021; LeCun et al., 2015

▶ If you have a number of hidden layers, you can call the
network a “deep learning” network
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Excursus: Neural Networks
Hidden layers

Lanham, 2021; LeCun et al., 2015

▶ There are a lot of options here:
▶ Which neurons are linked

▶ Different activation functions in the different layers

▶ ...
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Excursus: Neural Networks
Hidden layers

Lanham, 2021; LeCun et al., 2015

Now you!
▶ Go back to https://playground.tensorflow.org/

▶ Design a network that only takes X1 and X2 as Input and can
accurately predict the “Exclusive or” data

▶ Design a network that can accurately predict the “Spiral” data

▶ You can add hidden layers, and change the number of neurons
in each hidden layer
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Excursus: Neural Networks
Hidden layers

▶ With a few deep layers, RGB color classification reaches an
accuracy of around .89:
https://medium.com/analytics-vidhya/building-rgb-color-
classifier-part-1-af58e3bcfef7
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Excursus: Neural Networks
Hidden layers

Lanham, 2021; LeCun et al., 2015

A note on parameters and parsimony

▶ With hidden layers, you very quickly add a lot of parameters
to the model

▶ Occam’s razor: Try to explain things with as few parameters
as possible

▶ Does more hidden layers always mean more parameters?
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Back to distributional semantic models
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Predict models: word2vec

Hollis, 2017; Mandera, Keuleers, & Brysbaert, 2017; Mikolov et al., 2013

▶ Let’s have a look at predict models again:
Mikolov’s word2vec model
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Predict models: word2vec

Hollis, 2017; Mandera, Keuleers, & Brysbaert, 2017; Mikolov et al., 2013

▶ Input and output layer contain as many neurons as words
(with frequency > n) in the corpus, one neuron for each word

▶ One-hot encoding: Target and context words are 1, everything
else 0
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Predict models: word2vec

Hollis, 2017; Mandera, Keuleers, & Brysbaert, 2017; Mikolov et al., 2013

▶ One hidden layer, 300 neurons

▶ Go through the corpus word by word to train the network
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Predict models: word2vec

Hollis, 2017; Mandera, Keuleers, & Brysbaert, 2017; Mikolov et al., 2013

▶ Once the model is trained, the activation of the hidden layer
for a given word input is the 300-dimensional distributional
vector for this word
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▶ Once the model is trained, the activation of the hidden layer
for a given word input is the 300-dimensional distributional
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Predict models: word2vec

Hollis, 2017; Mandera, Keuleers, & Brysbaert, 2017; Mikolov et al., 2013

▶ word2vec comes in two variants:
▶ cbow: predicting target from context

▶ skip-gram: predicting context from target
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Predict models: word2vec

Hollis, 2017; Mandera, Keuleers, & Brysbaert, 2017; Mikolov et al., 2013

▶ For predicting behavioral data, cbow appears to be better
Baroni et al., 2014; Mandera et al., 2017

▶ Also more in line with psychological learning theories Hollis,
2017; Mandera et al., 2017
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Predict models: word2vec
Priming effects

Mandera, Keuleers, & Brysbaert, 2017 124



Predict models: word2vec
Word similarity ratings

Mandera, Keuleers, & Brysbaert, 2017 125



Predict models: word2vec
Comparing count vs predict

Baroni, Dinu, & Kruszewski, 2014 126



Predict models: word2vec
Comparing count vs predict

Baroni, Dinu, & Kruszewski, 2014

count predict
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Predict models: word2vec
Comparing count vs predict

Altszyler et al., 2017; Lenci et al., 2022

A word of caution:
▶ word2vec seems to fail for small corpora Altszyler et al., 2017

▶ In absolute terms, differences in performance are not dramatic

▶ Lenci et al. (2022), large-scale evaluation of distributional
semantic models with many different tasks: “the alleged
superiority of predict based models is more apparent than real,
and surely not ubiquitous”
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Using DSMs I: The LSA homepage
Dennis, 2007

▶ Go to http://wordvec.colorado.edu/

▶ Using the word2vec model
▶ Find the 20 nearest neighbors of “cat” and visualize them

▶ Calculate the cosine similarity between
▶ mouse – dog

▶ cat – rodent

▶ tea – tree

▶ Compute all pairwise similarities between
▶ mouse – rat – keyboard – cat
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Using DSMs I: The LSA homepage
Dennis, 2007

▶ Are the results different than when using the LSA space?
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Comparing DSMs

Whenever comparing two models, keep in mind that different
components can differ:
▶ The training corpus (was kept identical in these studies)

▶ incl. corpus preprocessing

▶ The general algorithm
▶ incl. its parameter values
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Using DSMs I: The LSA homepage
Dennis, 2007

▶ How easily can you use the results of this homepage in your
data analysis?
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Using DSMs II: The SNAUT website
Mandera et al., 2017

▶ Go to http://meshugga.ugent.be/snaut//

▶ Using the English cbow space
▶ Find the 20 nearest neighbors of “cat”

▶ Calculate the cosine similarity between
▶ mouse – dog

▶ cat – rodent

▶ tea – tree

▶ Compute all pairwise similarities between
▶ mouse – rat – keyboard – cat
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Using DSMs II: The SNAUT website

▶ How easily can you use these results in your data analysis?
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Using DSMs III: The R package LSAfun
Günther, Dudschig, & Kaup, 2015

▶ Install the package in R, using
install.packages("LSAfun")

▶ Load it using library("LSAfun")

▶ For an overview over the package, use
help(package="LSAfun")

▶ There is a video tutorial at
www.fritzguenther.de/software-resources/video tutorials

▶ Download a semantic space from
www.fritzguenther.de/software-resources/semantic_
spaces
Save it somewhere you can find it again!
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Using DSMs III: The R package LSAfun
Günther, Dudschig, & Kaup, 2015

▶ Load the semantic space into the R workspace using either
setwd("PATH")
load("NAMEOFSPACE")

or
load("PATH/NAMEOFSPACE")

▶ "PATH" is where you saved the file

▶ "NAMEOFSPACE" is the name of the file
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Using DSMs III: The R package LSAfun
Günther, Dudschig, & Kaup, 2015

▶ Using the LSAfun package and the semantic space you
downloaded
▶ Find the 20 nearest neighbors of “cat”, using neighbors()

▶ Visualize this neighborhood using plot neighbors()

▶ Using pairwise() , calculate the cosine similarity between
▶ mouse – dog

▶ cat – rodent

▶ tea – tree

▶ Using multicos(), compute all pairwise similarities between
▶ mouse – rat – keyboard – cat

▶ Use ?function for info on how to use a function
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Using DSMs III: The R package LSAfun
Günther, Dudschig, & Kaup, 2015

▶ How easily can you use these results in your data analysis?
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Using DSMs
Analyzing real data

▶ MEN dataset: Similarity scores for word pairs (Bruni et al.,
2014)

▶ Download the dataset from URL
Save it somewhere you can find it!

▶ Load the dataset into the R workspace:
▶ Option 1: Read the file using RStudio’s “Import dataset”,

naming it men

▶ Option 2: Read the file using
men <- read.csv("PATH TO DATA/men.csv")

▶ Option 3: Read the file using
setwd("PATH TO DATA")
men <- read.csv("men.csv")
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Excursus: Some additional R
Inspecting data

Inspect the data file!
▶ Option 1: Click on it in the “Environment” panel

▶ Option 2: View(men)

▶ Option 3: head(men)
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Excursus: Some additional R
Inspecting data

▶ Get a summary of the data structure with
summary(men)
str(men)
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Excursus: Some additional R
Indexing data frames

▶ To get a specific row of the data frame, you can use
commands like
men[1,]
men[c(1,3,5),]
men[1:10,]
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Excursus: Some additional R
Indexing data frames

▶ Same for a specific column of the data frame
men[,1]
men[,c(1,3)]

▶ To get a column by name, use one of the following:
men[,"rt"]
men$rt

▶ To add a column to the dataframe, you can also use the $
operator: men$number <- 1:nrow(men)
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Using DSMs
Analyzing real data

▶ Compute the rank correlation between the MEN
similarity ratings and DSM cosine similarities, using any
method, source, and model of your choice

▶ To compute a rank correlation in R, use
cor(x,y,method="spearman",use="pairwise.complete.obs")

▶ (For this exercise, you can ignore missing values)
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The content of DSMs
What are we measuring?

Günther, Rinaldi, & Marelli, 2019

▶ The type of relation: Semantic vs. associative Jones, Kintsch, &
Mewhort, 2007

▶ However, most actual models measure both relations to some
degree
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The content of DSMs
What are we measuring?

Günther, Rinaldi, & Marelli, 2019

▶ DSM cosine similarities are not simply co-occurrence
probabilities

▶ Words can have very similar vectors even if they never occur
together

▶ The passionate nurse treats patients in the hospital

▶ The passionate doctor treats patients in the hospital

▶ The doctor saved her patient

▶ A whale travels the ocean

patient hospital ocean

nurse 1 1 0

doctor 2 1 0

whale 0 0 1
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The content of DSMs
What are we measuring?

Günther, Rinaldi, & Marelli, 2019

▶ DSMs are estimated only from text corpora

▶ They thus only have access to information that is
communicated via language (linguistic experience)

▶ The training corpus will have a huge result on the resulting
representations
▶ A DSM trained on biology textbooks will probably not have a

good representation of Middle Eastern geopolitics

▶ To model human semantic memory, we want corpora that are
representative for an average speaker’s language experience

▶ Algorithms tend to work better on larger corpora (less noise)
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The content of DSMs
What are we measuring?

Günther, Rinaldi, & Marelli, 2019

▶ DSMs are estimated only from text corpora

▶ However, via the training corpora they still have access to
world knowledge (contingent facts about the world we live in,
which is typically not considered part of the “semantics” of a
word)

▶ Example: Who is US president at a time, who is his wife, ...

▶ After all, speakers produce language to talk about the world
they live in

148



The content of DSMs
What are we measuring?

Günther, Rinaldi, & Marelli, 2019

▶ Since text corpora are generated by human speakers, DSMs
also learn the biases of these human speakers

▶ For example, standard DSMs show gender and racial biases
Caliskan et al., 2017; Bhatia, 2017
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The content of DSMs
What are we measuring?

Günther, Rinaldi, & Marelli, 2019

▶ DSMs only learn from text and have no access to perceptual
experience

▶ Only models of lexical semantics, not human concepts?
Glenberg & Robertson, 2000

▶ People use language to talk about the world: Language data
encode perceptual/sensorimotor aspects of our world Louwerse,
2011

▶ To some degree, DSMs capture these aspects

▶ Analogy: Congenitally blind person’s representation of visual
information
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The content of DSMs
What are we measuring?

Now you!

▶ Using one of the methods we have discussed so far (LSA
homepage, SNAUT, LSAfun), explore the representations of a
DSM of your choice (using similarities, neighborhoods, ...)

▶ Use examples you find interesting

▶ Do you find something intuitive/counter-intuitive?
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Vision-based representations
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Vision-based representations

▶ We have more experience than just language

▶ Sensorimotor experience, especially vision, is very important
as well

▶ How do we build vision-based representations?
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Vision-based representations
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A deep convolutional neural network (DCNN)

Chatfield et al., 2014
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A deep convolutional neural network (DCNN)

Chatfield et al., 2014

layer and dimensionality

RGB codes
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▶ Output: Classification into 1,000 different image classes (by
label)
We have discussed classifiers before

▶ Let’s have a look at the input
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Excursus: Convolutional networks

Lanham, 2021

▶ “Up until 2012 image analysis with neural networks was done
by flattening an image to a single one-dimensional (1D)
vector” p. 43

▶ Values in this vector could be brightness of each pixel (i.e.,
position on a gray scale for black-and-white images)
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Excursus: Convolutional networks

Lanham, 2021

▶ “often missed obvious image features.” p. 43
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Excursus: Convolutional networks

Lanham, 2021

▶ New approach: No flattening; taking spatial information
seriously Krizhevsky et al., 2012

▶ Encode image as a matrix instead of a vector
For colored images, use a tensor (“3D-Matrix”) encoding the
RGB code of each pixel
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Excursus: Convolutional networks

Chatfield et al., 2014

layer and dimensionality

RGB codes
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▶ Layers 6– 8 are fully connected:

▶ Each neuron receives input from each neuron in the previous
layer

▶ These are the “standard” hidden layers we discussed before

159



Excursus: Convolutional networks

Chatfield et al., 2014

layer and dimensionality

RGB codes
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▶ Layers 1–5 are convolutional layers

▶ These only receive input from some neurons in the previous
layer; more specifically, only from a certain area

▶ Let’s see what that means
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Excursus: Convolutional networks

Lanham, 2021 161



Excursus: Convolutional networks

Chatfield et al., 2014
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▶ Is this structure similar to the (neural) human visual system?

▶ Yes and no
Cichy & Kaiser, 2019; Jacobs & Bates, 2019; Kriegeskorte, 2015; Lindsay, 2021;
Majaj & Pelli, 2018; Serre, 2019
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The VGG-F model

Chatfield et al., 2014

https://donglaiw.github.io/page/mneuron
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The VGG-F model

▶ These networks are called deep convolutional neural networks
(DCNNs)

▶ Trained on large image databases (ImageNet); very good
classification performance

▶ DCNNs for images come in many, many shapes and sizes (the
one shown here is just one example, VGG-F)
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The VGG-F model
Image representations

▶ Once the network model is trained, we have a fixed set of
weights

▶ For any image we use as input (also images outside the
training set!), this will produce a representation in each layer
of the network

▶ For predicting human behavioral data, the deeper layers (6-7)
of the VGG-F network show the best performance
(4,096-dimensional vector representations) Günther et al., 2012
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The VGG-F model
Image representations
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The VGG-F model

Now you!

▶ Go to http://vispa.fritzguenther.de

▶ The site is modelled after SNAUT

▶ With the aid of the picture picker on the right, calculate the
similarity between three image pairs of your choice

▶ Find the 10 most similar images to an image of your choice
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The VGG-F model

Now you!

▶ Repeat the same calculations in R using the LSAfun package

▶ Download the IMG space from
www.fritzguenther.de/software-resources/vispa

▶ Again, there is a video tutorial at

▶ There is a video tutorial at
www.fritzguenther.de/software-resources/video tutorials

▶ This works exactly like with DSMs; you only use image names
instead of words
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The VGG-F model
Image representations

▶ Is this useful for psychology?

▶ Can we predict human behavioral data?
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Visual similarity ratings for images
3,000 image pairs; 480 participants

Günther, Marelli, Tureski, & Petilli, 2021

Which look the most similar? Which look the least similar? Hollis, 2018
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Visual similarity ratings for images
3,000 image pairs; 480 participants

Günther, Marelli, Tureski, & Petilli, 2021

rating value = .821

[BERRY] [RASPBERRY]

rating value = .818

[SURGEON] [SURGERY]
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Visual similarity ratings for images
3,000 image pairs; 480 participants

Günther, Marelli, Tureski, & Petilli, 2021

rating value = .204

[CHEETAH] [PHONE]

rating value = .205

[ROD] [NOVICE]
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Visual similarity ratings for images
3,000 image pairs; 480 participants

Günther, Marelli, Tureski, & Petilli, 2021
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Discrimination task for images
3,000 image pairs (from Study 2); 750 participants

Günther, Marelli, Tureski, & Petilli, 2021
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Discrimination task for images
3,000 image pairs (from Study 2); 750 participants
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Priming (visual decision task) for images
3,000 image pairs (from Study 2 and 4); 750 participants

Günther, Marelli, Tureski, & Petilli, 2021
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Priming (visual decision task) for images
3,000 image pairs (from Study 2 and 4); 750 participants

Günther, Marelli, Tureski, & Petilli, 2021

Diffeomorphic scrambling of images (Stojanoski & Cusack, 2014)

original

scrambled
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Priming (visual decision task) for images
3,000 image pairs (from Study 2 and 4); 750 participants

Response Times Percent correct
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Vision-based concept representations
▶ We have reasonable representations for individual images

▶ Can we use this to build vision-based concept representations?
ALPACA
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Vision-based concept representations

There are other options; see Battleday et al. (2020) 180



The VGG-F model

Now you!

▶ With a method of your choice, calculate the visual similarity
(DCNN) and the semantic similarity (DSM) between any
three word pairs you like
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Visual similarity ratings for words/concepts
3,000 word pairs; 480 participants

Günther, Marelli, Tureski, & Petilli, 2021 182



Visual similarity ratings for words/concepts
3,000 word pairs; 480 participants

Günther, Marelli, Tureski, & Petilli, 2021

highest scores lowest scores

item value item value

feline – kitty .821 inn – jellyfish .204

coke – pepsi .819 salt – teacher .206

cream – milk .817 uphill – gravy .212

tangerine – orange .816 giraffe – jelly .212

chimpanzee – ape .814 flamingo – office .212
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Visual similarity ratings for words/concepts
3,000 word pairs; 480 participants

Günther, Marelli, Tureski, & Petilli, 2021
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Visual effects on semantic similarity ratings

Now you!

▶ Compute the visual similarity for the word pairs in the MEN
dataset

▶ Compute the Spearman correlation between these similarities
and the MEN similarity ratings

▶ What would you expect to happen?
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Visual effects on semantic similarity ratings
1,167 items from the MEN dataset (Bruni et al., 2015)

Günther, Marelli, Tureski, & Petilli, 2021

rS = .79 with visual similarity ratings
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Visual effects in lexical priming
1,128 word pairs; Semantic Priming Project, Hutchison et al., 2013

Petilli, Günther, Vergallito, Ciapparelli, & Marelli, 2021

▶ Vision-based prototype similarity predicts priming effects in
lexical decision (i.e., for word pairs),

▶ even after controlling for DSM similarities
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Visual effects in lexical priming
1,128 word pairs; Semantic Priming Project, Hutchison et al., 2013
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▶ Vision-based prototype similarity predicts priming effects in
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Typicality

188



Typicality ratings for word-image pairs
1,500 words à 5 images; 900 participants
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Typicality ratings for word-image pairs
1,500 words à 5 images; 900 participants

lemon

.308 .356 .561 .599 .903

dolphin

.096 .382 .568 .607 .619
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Typicality ratings for word-image pairs
1,500 words à 5 images; 900 participants
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Typicality

Now you!

▶ With a method of your choice, find two images that are very
typical of their category, and two that are very atypical

▶ Why might these particular images be atypical?
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Linking language and vision
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Linking language and vision

Günther, Petilli, Vergallito, & Marelli, 2020

▶ Before, we have seen the argument that language is used to
talk about the world and thus encodes perceptual information

▶ Can we predict how things look like when we just have
language information?
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Linking language and vision
Training set: 7,801 words
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Linking language and vision
Training set: 7,801 words
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Linking language and vision

Günther, Petilli, Vergallito, & Marelli, 2020

word type word model prediction random image

concrete stallion

concrete scout

concrete aspirin

abstract childhood

abstract jealousy
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Linking language and vision

Günther, Petilli, Vergallito, & Marelli, 2020

▶ 371 items outside the training set

▶ How often did participants choose the model prediction
(2AFC)?
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Linking language and vision

Günther, Petilli, Vergallito, & Marelli, 2020

▶ Language encodes (at least some) perceptual information

▶ This information can be de-coded even with simple linear
regression
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Linking language and vision

Now you!
▶ There are far more powerful text-to-vision models in AI

research

▶ Go to https://www.craiyon.com/ and try out some things

▶ (To fully explain what’s going on here, we’d need a few
additional concepts like generative networks and modern
language models, which we will not cover here)
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Summary
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Summary

▶ Recent research in computer science/AI (fields like natural
language processing and computer vision) has provided us
with powerful representation models

▶ We can use these to approximate human mental
representations

▶ Empirical evidence so far is promising
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Room for Discussion
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