
Getting vectors DISSECT LSAfun Empirical analyses

Investigating morphological processing

Experimental and computational approaches

Hands-on sessions

Fritz Günther & Marco Marelli

Spring School Bolzano 2021

1 / 80

Getting vectors DISSECT LSAfun Empirical analyses

Investigating morphological processing with distributional
semantics
Structure

I Getting the word vectors

I Introduction to DISSECT (python toolkit)

I Building the vector space

I Training the compositional model

I Applying the compositional model

I Introduction to LSAfun (R package)

I Computing similarities

I Exploring neighborhoods

I A little empirical analysis of behavioral data

2 / 80

Getting vectors DISSECT LSAfun Empirical analyses

Investigating morphological processing with distributional
semantics
Structure

I Getting the word vectors

I Introduction to DISSECT (python toolkit)

I Building the vector space

I Training the compositional model

I Applying the compositional model

I Introduction to LSAfun (R package)

I Computing similarities

I Exploring neighborhoods

I A little empirical analysis of behavioral data

2 / 80

Getting vectors DISSECT LSAfun Empirical analyses

Investigating morphological processing with distributional
semantics
Structure

I Getting the word vectors

I Introduction to DISSECT (python toolkit)

I Building the vector space

I Training the compositional model

I Applying the compositional model

I Introduction to LSAfun (R package)

I Computing similarities

I Exploring neighborhoods

I A little empirical analysis of behavioral data

2 / 80

Getting vectors DISSECT LSAfun Empirical analyses

Investigating morphological processing with distributional
semantics
Structure

I Getting the word vectors

I Introduction to DISSECT (python toolkit)

I Building the vector space

I Training the compositional model

I Applying the compositional model

I Introduction to LSAfun (R package)

I Computing similarities

I Exploring neighborhoods

I A little empirical analysis of behavioral data

2 / 80

Getting vectors DISSECT LSAfun Empirical analyses

Investigating morphological processing with distributional
semantics
Structure

I Getting the word vectors

I Introduction to DISSECT (python toolkit)

I Building the vector space

I Training the compositional model

I Applying the compositional model

I Introduction to LSAfun (R package)

I Computing similarities

I Exploring neighborhoods

I A little empirical analysis of behavioral data

2 / 80

Getting vectors DISSECT LSAfun Empirical analyses

Getting the word vectors

3 / 80

Getting vectors DISSECT LSAfun Empirical analyses

Getting the word vectors
Pre-built options

Count- and prediction-based vectors by
Baroni, Dinu, & Kruszewski (2014). Don’t count, predict! A
systematic comparison of context-counting vs context-predicting
semantics vectors.

(and other resources)

https://wiki.cimec.unitn.it/tiki-index.php?page=CLIC

4 / 80

https://wiki.cimec.unitn.it/tiki-index.php?page=CLIC

Getting vectors DISSECT LSAfun Empirical analyses

Getting the word vectors
Pre-built options

Count- and prediction-based vectors by
Mandera, Keuleers, & Brysbaert (2017). Explaining human
performance in psycholinguistic tasks with models of semantic
similarity based on prediction and counting: A review and empirical
validation.

http://meshugga.ugent.be/snaut//spaces/

5 / 80

http://meshugga.ugent.be/snaut//spaces/

Getting vectors DISSECT LSAfun Empirical analyses

Getting the word vectors
Pre-built options

GloVe models by
Pennington, Socher, & Manning (2014). GloVe: Global Vectors for
Word Representation.

https://nlp.stanford.edu/projects/glove/

6 / 80

https://nlp.stanford.edu/projects/glove/

Getting vectors DISSECT LSAfun Empirical analyses

Getting the word vectors
Pre-built options

fastText models by
Grave, Bojanowski, Gupta, Joulin, & Mikolov (2018). Learning
Word Vectors for 157 Languages.

https://github.com/facebookresearch/fastText/blob/

master/docs/crawl-vectors.md

7 / 80

https://github.com/facebookresearch/fastText/blob/master/docs/crawl-vectors.md
https://github.com/facebookresearch/fastText/blob/master/docs/crawl-vectors.md

Getting vectors DISSECT LSAfun Empirical analyses

Getting the word vectors
Pre-built options

BERT models
Turc, Chang, Lee, & Toutanova (2019). Well-Read Students Learn
Better: On the Importance of Pre-training Compact Models.

https://github.com/google-research/bert

8 / 80

https://github.com/google-research/bert

Getting vectors DISSECT LSAfun Empirical analyses

Getting the word vectors
Pre-built options

My own semantic space repository
Günther, Dudschig, & Kaup (2015). LSAfun – An R package for
computations based on Latent Semantic Analysis.

https://sites.google.com/site/fritzgntr/

software-resources/semantic_spaces

9 / 80

https://sites.google.com/site/fritzgntr/software-resources/semantic_spaces
https://sites.google.com/site/fritzgntr/software-resources/semantic_spaces

Getting vectors DISSECT LSAfun Empirical analyses

Getting the word vectors
Building your own vectors

I You need a (large) corpus

I This corpus typically needs to be pre-processed in a certain
way (e.g., one word per line, or one document per line)

10 / 80

Getting vectors DISSECT LSAfun Empirical analyses

Getting the word vectors
Building your own vectors

I You need a (large) corpus

I This corpus typically needs to be pre-processed in a certain
way (e.g., one word per line, or one document per line)

10 / 80

Getting vectors DISSECT LSAfun Empirical analyses

Getting the word vectors
Building your own vectors

I You need a (large) corpus

I This corpus typically needs to be pre-processed in a certain
way (e.g., one word per line, or one document per line)

10 / 80

Getting vectors DISSECT LSAfun Empirical analyses

Getting the word vectors
Building your own vectors

Python library: gensim

https://radimrehurek.com/gensim/

11 / 80

https://radimrehurek.com/gensim/

Getting vectors DISSECT LSAfun Empirical analyses

Getting the word vectors
Building your own vectors

Python library: DISSECT

https:

//github.com/composes-toolkit/dissect/tree/python3

12 / 80

https://github.com/composes-toolkit/dissect/tree/python3
https://github.com/composes-toolkit/dissect/tree/python3

Getting vectors DISSECT LSAfun Empirical analyses

Getting the word vectors
Building your own vectors

R packages: rword2vec and word2vec

https://github.com/mukul13/rword2vec

https://cran.r-project.org/web/packages/word2vec/

13 / 80

https://github.com/mukul13/rword2vec
https://cran.r-project.org/web/packages/word2vec/

Getting vectors DISSECT LSAfun Empirical analyses

Getting the word vectors
Building your own vectors

TensorFlow

https:

//www.tensorflow.org/tutorials/text/word_embeddings

14 / 80

https://www.tensorflow.org/tutorials/text/word_embeddings
https://www.tensorflow.org/tutorials/text/word_embeddings

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit

15 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
General information

I Python toolkit for working with distributional semantics

I Building semantic spaces

I Composition

I Similarities

16 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
General information

I Python toolkit for working with distributional semantics

I Building semantic spaces

I Composition

I Similarities

16 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Documentation and Tutorial

I DISSECT has an excellent documentation and tutorial

I Download available at:
https:

//wiki.cimec.unitn.it/tiki-index.php?page=CLIC

I Includes introduction on python code as well as command-line
usage

I Here, we will focus on command-line usage

17 / 80

https://wiki.cimec.unitn.it/tiki-index.php?page=CLIC
https://wiki.cimec.unitn.it/tiki-index.php?page=CLIC

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Documentation and Tutorial

I DISSECT has an excellent documentation and tutorial

I Download available at:
https:

//wiki.cimec.unitn.it/tiki-index.php?page=CLIC

I Includes introduction on python code as well as command-line
usage

I Here, we will focus on command-line usage

17 / 80

https://wiki.cimec.unitn.it/tiki-index.php?page=CLIC
https://wiki.cimec.unitn.it/tiki-index.php?page=CLIC

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Documentation and Tutorial

I DISSECT has an excellent documentation and tutorial

I Download available at:
https:

//wiki.cimec.unitn.it/tiki-index.php?page=CLIC

I Includes introduction on python code as well as command-line
usage

I Here, we will focus on command-line usage

17 / 80

https://wiki.cimec.unitn.it/tiki-index.php?page=CLIC
https://wiki.cimec.unitn.it/tiki-index.php?page=CLIC

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Documentation and Tutorial

I DISSECT has an excellent documentation and tutorial

I Download available at:
https:

//wiki.cimec.unitn.it/tiki-index.php?page=CLIC

I Includes introduction on python code as well as command-line
usage

I Here, we will focus on command-line usage

17 / 80

https://wiki.cimec.unitn.it/tiki-index.php?page=CLIC
https://wiki.cimec.unitn.it/tiki-index.php?page=CLIC

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Documentation and Tutorial

I DISSECT has an excellent documentation and tutorial

I Download available at:
https:

//wiki.cimec.unitn.it/tiki-index.php?page=CLIC

I Includes introduction on python code as well as command-line
usage

I Here, we will focus on command-line usage

18 / 80

https://wiki.cimec.unitn.it/tiki-index.php?page=CLIC
https://wiki.cimec.unitn.it/tiki-index.php?page=CLIC

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Documentation and Tutorial

I DISSECT has an excellent documentation and tutorial

I Download available at:
https:

//wiki.cimec.unitn.it/tiki-index.php?page=CLIC

I Includes introduction on python code as well as command-line
usage

I Here, we will focus on command-line usage

18 / 80

https://wiki.cimec.unitn.it/tiki-index.php?page=CLIC
https://wiki.cimec.unitn.it/tiki-index.php?page=CLIC

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Documentation and Tutorial

I DISSECT has an excellent documentation and tutorial

I Download available at:
https:

//wiki.cimec.unitn.it/tiki-index.php?page=CLIC

I Includes introduction on python code as well as command-line
usage

I Here, we will focus on command-line usage

18 / 80

https://wiki.cimec.unitn.it/tiki-index.php?page=CLIC
https://wiki.cimec.unitn.it/tiki-index.php?page=CLIC

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Documentation and Tutorial

I DISSECT has an excellent documentation and tutorial

I Download available at:
https:

//wiki.cimec.unitn.it/tiki-index.php?page=CLIC

I Includes introduction on python code as well as command-line
usage

I Here, we will focus on command-line usage

18 / 80

https://wiki.cimec.unitn.it/tiki-index.php?page=CLIC
https://wiki.cimec.unitn.it/tiki-index.php?page=CLIC

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Step 1: Building the space (Documentation: /toolkit/creating.html)

I The (distributional) semantic space contains (distributional)
semantic vectors representing word meanings

19 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Step 1: Building the space (Documentation: /toolkit/creating.html)

I The actual file (dense matrix format, dm): One line per vector,
word as the first entry, followed by the N dimensional values,
no headline

I N needs to be the same for all words

I Example:

happy 1.23 -0.12 2.33 - 1.22

unhappy 1.44 1.10 0.02 -1.11

familiar 0.11 - 0.22 2.94 -1.35

20 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Step 1: Building the space (Documentation: /toolkit/creating.html)

The build core space.py function

python build core space.py [options] [config file]

The options are:

-i, --input Prefix of the input files.

--input format Input format of the file containing co-occurrence
counts: one of sm (sparse matrix), dm (dense
matrix), pkl (pickle), see information about the input
formats.

-o, --output Output directory. For each specification of space
creation parameters, a file named
CORE SS.inputname.parameters.format will be left
in this directory.

Example:
python build core space.py -i ../examples/data/in/ex01

--input format sm -o ../examples/data/out/

21 / 80

matrix_file.html#cooccurrence-matrix-file
matrix_file.html#cooccurrence-matrix-file

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Step 1: Building the space (Documentation: /toolkit/creating.html)

The build core space.py function

python build core space.py [options] [config file]

The options are:

-i, --input Prefix of the input files.

--input format Input format of the file containing co-occurrence
counts: one of sm (sparse matrix), dm (dense
matrix), pkl (pickle), see information about the input
formats.

-o, --output Output directory. For each specification of space
creation parameters, a file named
CORE SS.inputname.parameters.format will be left
in this directory.

Example:
python build core space.py -i ../examples/data/in/ex01

--input format sm -o ../examples/data/out/
21 / 80

matrix_file.html#cooccurrence-matrix-file
matrix_file.html#cooccurrence-matrix-file

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Step 1: Building the space (Documentation: /toolkit/creating.html)

For more options, see the Documentation!

22 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Step 1: Building the space (Documentation: /toolkit/creating.html)

Now you!

I Use build core space.py to build a space from the file
baroni.dm (in the Materials for this course)

I In addition to other output, this will always produce the .pkl
file we need to continue

23 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Step 2: Training a composition model

I Mixture-based models (such as the Additive Model):
Arithmetic operation on constituent vectors

I Both constituents need to have vector representations in the
semantic space

24 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Step 2: Training a composition model

I Lexical Functions (such as FRACSS): One constituent is a
function mapping the other constituent onto the combined
meaning

I The function does not necessarily need a vector representation
in the semantic space

for our purpose, replace old with un- and dog with happy 25 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Step 2: Training a composition model

I CAOSS model: Combination of (1.) functional mapping and
(2.) mixture (addition)

26 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Step 2: Training a composition model

I In our course, we focus on a small example:
A FRACSS model just for the prefix un-

I First, we need to identify a training set
This set consists of words with the prefix un- and their stems

I For each pair, both the complex word and the stem need to
have a vector in the semantic space

I More specifically, the file including the training set needs to
look like this:

un- happy unhappy

un- fair unfair

un- grateful ungrateful

...

27 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Step 2: Training a composition model

I In our course, we focus on a small example:
A FRACSS model just for the prefix un-

I First, we need to identify a training set
This set consists of words with the prefix un- and their stems

I For each pair, both the complex word and the stem need to
have a vector in the semantic space

I More specifically, the file including the training set needs to
look like this:

un- happy unhappy

un- fair unfair

un- grateful ungrateful

...

27 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Step 2: Training a composition model

I In our course, we focus on a small example:
A FRACSS model just for the prefix un-

I First, we need to identify a training set
This set consists of words with the prefix un- and their stems

I For each pair, both the complex word and the stem need to
have a vector in the semantic space

I More specifically, the file including the training set needs to
look like this:

un- happy unhappy

un- fair unfair

un- grateful ungrateful

...

27 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Step 2: Training a composition model

I In our course, we focus on a small example:
A FRACSS model just for the prefix un-

I First, we need to identify a training set
This set consists of words with the prefix un- and their stems

I For each pair, both the complex word and the stem need to
have a vector in the semantic space

I More specifically, the file including the training set needs to
look like this:

un- happy unhappy

un- fair unfair

un- grateful ungrateful

...

27 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Step 2: Training a composition model

Now you!

I The file baroni.rows (in the Materials for this course)
contains all words available in the semantic space

I Use this file to identify a training set, using a program and
method of your choice, saving it as UN trainset.txt

I For now, just focus on pairs (un[stem],[stem]) for which both
un[stem] and [stem] are available in the file baroni.rows

I Remember, the final file needs to look like this:

un- happy unhappy

un- fair unfair

un- grateful ungrateful

...
28 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Step 2: Training a composition model

Now you!

I Inspect the file

I What are some potential problems of our selection procedure?

I How can we avoid these problems?

I → For example, use annotated resources such as CELEX

29 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Step 2: Training a composition model

Now you!

I Inspect the file

I What are some potential problems of our selection procedure?

I How can we avoid these problems?

I → For example, use annotated resources such as CELEX

29 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Step 2: Training a composition model

Now you!

I Inspect the file

I What are some potential problems of our selection procedure?

I How can we avoid these problems?

I → For example, use annotated resources such as CELEX

29 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Step 2: Training a composition model (Documentation: /toolkit/composing.html)

The train composition.py function

python train composition.py [options] [config file]

The options are:

-i, --input Input file containing a list of element1 element2
phrase tuples on each line. The words (or phrases) in
columns 1 and 2 will be extracted from the argument
space, the phrase in column 3 from the phrase space.
When training a Lexical Function model, the first
column (element1) will contain a functor name, and
the element2 and phrase vectors will be used as an
input-output training pair when estimating the
corresponding function (a separate function will be
trained for each distinct element1 in the file).

30 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Step 2: Training a composition model (Documentation: /toolkit/composing.html)

The train composition.py function

python train composition.py [options] [config file]

The options are:

-i, --input Input file containing a list of element1 element2
phrase tuples on each line. The words (or phrases) in
columns 1 and 2 will be extracted from the argument
space, the phrase in column 3 from the phrase space.
When training a Lexical Function model, the first
column (element1) will contain a functor name, and
the element2 and phrase vectors will be used as an
input-output training pair when estimating the
corresponding function (a separate function will be
trained for each distinct element1 in the file).

30 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Step 2: Training a composition model (Documentation: /toolkit/composing.html)

-o, --output Output directory of the resulting composition
model. The output is
a pickle dump of the composition model object, named
TRAINED COMP MODEL.model name.input file.pkl,
e.g.,
TRAINED COMP MODEL.weighted add.mytrainingfile.pkl.

-m, --model Name of a composition model to be trained. One of
weighted add (Weighted Additive), full add (Full
Additive), lexical func (Lexical Function) or dilation
(Dilation).

--export params: True/False If True, parameters of the
learned model are exported to an appropriate format.
Optional, False by default.

31 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Step 2: Training a composition model (Documentation: /toolkit/composing.html)

-a, --arg space File containing the space of the arguments
(i.e., element1 and element2). Pickle format (and
.pkl extension) required.

-p, --phrase space File containing the phrase space (i.e., the
space that contains the phrase part of the element1
element2 phrase tuples) used for training. Pickle
format (and .pkl extension) required.

I When working with morphologically complex words, the
argument space and the peripheral space are identical

Example:

python train composition.py

-i ../examples/data/in/train data.txt -m lexical func

-a ../examples/data/out/ex01.pkl

-p ../examples/data/out/PHRASE SS.ex10.pkl

-o ../examples/data/out/ --export params True
32 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Step 2: Training a composition model (Documentation: /toolkit/composing.html)

For more options, see the Documentation!

33 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Step 2: Training a composition model (Documentation: /toolkit/composing.html)

Now you!

I Use train composition.py to train a Lexical Function
model with the file containing our training set from the
previous step

I un- is the Lexical Function mapping [stem] onto un[stem]

34 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Step 3: Applying a composition model (Documentation: /toolkit/composing.html)

I Once the composition model is trained, you can apply it to
any vector to create compositional vectors

35 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Step 3: Applying a composition model (Documentation: /toolkit/composing.html)

I Once the composition model is trained, you can apply it to
any vector to create compositional vectors

35 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Step 3: Applying a composition model (Documentation: /toolkit/composing.html)

I For example, apply the Lexical Function for un- to silly to
create a vector for unsilly

I Can be done for novel combinations (unsilly), but also for
existing words: Apply un- to happy to create a compositional
vector for unhappy

I Think of these compositional vectors for familiar compounds
as “Which meaning would someone expect who doesn’t know
the lexicalized meaning of the word”

36 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Step 3: Applying a composition model (Documentation: /toolkit/composing.html)

I For example, apply the Lexical Function for un- to silly to
create a vector for unsilly

I Can be done for novel combinations (unsilly), but also for
existing words: Apply un- to happy to create a compositional
vector for unhappy

I Think of these compositional vectors for familiar compounds
as “Which meaning would someone expect who doesn’t know
the lexicalized meaning of the word”

36 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Step 3: Applying a composition model (Documentation: /toolkit/composing.html)

I For example, apply the Lexical Function for un- to silly to
create a vector for unsilly

I Can be done for novel combinations (unsilly), but also for
existing words: Apply un- to happy to create a compositional
vector for unhappy

I Think of these compositional vectors for familiar compounds
as “Which meaning would someone expect who doesn’t know
the lexicalized meaning of the word”

36 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Step 3: Applying a composition model (Documentation: /toolkit/composing.html)

I The same for other compositional models:

I Construct a compositional compound vector from its two
constituent vectors using the CAOSS model

37 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Step 3: Applying a composition model (Documentation: /toolkit/composing.html)

I The same for other compositional models:

I Construct a compositional compound vector from its two
constituent vectors using the CAOSS model

37 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Step 3: Applying a composition model (Documentation: /toolkit/composing.html)

The apply composition.py function

python apply composition.py [options] [config file]

The options are:

-i, --input Input file containing a list of element1 element2
composed phrase tuples on each line. The words (or
phrases) in column 1 will be composed with the
words (or phrases) in column 2. A semantic space for
the composed words is created using the strings in
column 3 as phrase labels (note that the latter
strings are arbitrary, they have no mandatory relation
to word1 and word2). If the Lexical Function model
is applied, element1 is interpreted as the name of the
functor to be used, element2 as the argument.

38 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Step 3: Applying a composition model (Documentation: /toolkit/composing.html)

The apply composition.py function

python apply composition.py [options] [config file]

The options are:

-i, --input Input file containing a list of element1 element2
composed phrase tuples on each line. The words (or
phrases) in column 1 will be composed with the
words (or phrases) in column 2. A semantic space for
the composed words is created using the strings in
column 3 as phrase labels (note that the latter
strings are arbitrary, they have no mandatory relation
to word1 and word2). If the Lexical Function model
is applied, element1 is interpreted as the name of the
functor to be used, element2 as the argument.

38 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Step 3: Applying a composition model (Documentation: /toolkit/composing.html)

I This means that the input is supposed to look like this:

un- happy unhappy

un- silly unsilly

...

I But it can also look like this:

un- happy unhappy cmp

un- silly unsilly cmp

...

I In principle, nothing stops you from doing this:

un- happy dragonman

un- silly fhjd444dfF

...

39 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Step 3: Applying a composition model (Documentation: /toolkit/composing.html)

I This means that the input is supposed to look like this:

un- happy unhappy

un- silly unsilly

...

I But it can also look like this:

un- happy unhappy cmp

un- silly unsilly cmp

...

I In principle, nothing stops you from doing this:

un- happy dragonman

un- silly fhjd444dfF

...

39 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Step 3: Applying a composition model (Documentation: /toolkit/composing.html)

I This means that the input is supposed to look like this:

un- happy unhappy

un- silly unsilly

...

I But it can also look like this:

un- happy unhappy cmp

un- silly unsilly cmp

...

I In principle, nothing stops you from doing this:

un- happy dragonman

un- silly fhjd444dfF

...

39 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Step 2: Training a composition model (Documentation: /toolkit/composing.html)

Now you!

I Create a new file UN applset.txt from the training set in
UN trainset.txt, transforming it from this:

un- happy unhappy

un- fair unfair

un- grateful ungrateful

...

to this:
un- happy unhappy cmp

un- fair unfair cmp

un- grateful ungrateful cmp

...

This will allow us to easily distinguish observed from
compositional vectors later on, which is very useful

40 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Step 3: Applying a composition model (Documentation: /toolkit/composing.html)

-o, --output Output directory of the resulting composed space.
The output is a pickle dump of the composed space
(and possibly a sparse or dense file with the same
data if requested with –output format option). The
output files are named
COMPOSED SS.model name.input file.format, e.g.,
COMPOSED SS.Dilation.myphrases.txt.pkl.

--output format: additional output format Additional
output format for the resulting composed space: one
of sm (sparse matrix), dm (dense matrix). This is in
addition to default pickle output. Optional.

-a, --arg space File(s) containing the space(s) of the
arguments. If a second file is provided, the second
element of a pair is interpreted in the additional
space. Pickle format (and .pkl extension) required.

41 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Step 3: Applying a composition model (Documentation: /toolkit/composing.html)

-m, --model Name of the composition model to be applied,
whose parameters will be directly specified on the
command line (instead of being read from model
file). One of mult (Multiplicative), weighted add
(Weighted Additive) or dilation (Dilation) is
expected. One (and only one) of -m or –load model
has to be provided.

--load model model file File containing a previously saved
composition model (pickle dump). One (and only
one) of -m or –load model has to be provided.

42 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Step 3: Applying a composition model (Documentation: /toolkit/composing.html)

Example:

python apply composition.py

-i ../examples/data/in/data to comp.txt

--load model ../examples/data/out/model01.pkl

-a ../examples/data/out/ex01.pkl -o ../examples/data/out/

--output format dm

43 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Step 3: Applying a composition model (Documentation: /toolkit/composing.html)

Now you!

I Use apply composition.py to apply the Lexical Function
model trained in the previous step onto the stems in
UN applset.txt, in order to create vectors for the
unhappy cmp-style expressions in this file

I Inspect the resulting COMPOSED SS file

I Repeat the same process for the novel combinations in the file
UN novelwords.txt (in the Materials for this course)

44 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Step 3: Applying a composition model (Documentation: /toolkit/composing.html)

Good job!

We now have everything we need to proceed!

45 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Step 3: Applying a composition model (Documentation: /toolkit/composing.html)

Good job!

We now have everything we need to proceed!

45 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
FRACSS: Further notes

I If you want to train FRACSS for more than one affix, all you
need to do is extending the files containing the training (and
application) sets:

un- happy unhappy

un- fair unfair

...
mis- cast miscast

mis- match mismatch

...
-ist violin violinist

-ist guitar guitarist

...

46 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Composition models: Further notes

I Note that you decide what counts as a training item

I Words don’t need to be separable at the surface level

-ist cycle cyclist

-ness happy happiness

I Words don’t necessarily need to be transparent or
etymologically related

-less fruit fruitless

-er corn corner

un- ion union

I In principle, nothing stops you from inserting complete
nonsense

-less karma chameleon

-derp door universe

47 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Composition models: Further notes

I Note that you decide what counts as a training item

I Words don’t need to be separable at the surface level

-ist cycle cyclist

-ness happy happiness

I Words don’t necessarily need to be transparent or
etymologically related

-less fruit fruitless

-er corn corner

un- ion union

I In principle, nothing stops you from inserting complete
nonsense

-less karma chameleon

-derp door universe

47 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Composition models: Further notes

I Note that you decide what counts as a training item

I Words don’t need to be separable at the surface level

-ist cycle cyclist

-ness happy happiness

I Words don’t necessarily need to be transparent or
etymologically related

-less fruit fruitless

-er corn corner

un- ion union

I In principle, nothing stops you from inserting complete
nonsense

-less karma chameleon

-derp door universe

47 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Composition models: Further notes

I Note that you decide what counts as a training item

I Words don’t need to be separable at the surface level

-ist cycle cyclist

-ness happy happiness

I Words don’t necessarily need to be transparent or
etymologically related

-less fruit fruitless

-er corn corner

un- ion union

I In principle, nothing stops you from inserting complete
nonsense

-less karma chameleon

-derp door universe

47 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Composition models: Further notes

How can you tell the difference between a chemist and a plumber?

Ask them to pronounce “unionized”

48 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Composition models: Further notes

How can you tell the difference between a chemist and a plumber?

Ask them to pronounce “unionized”

48 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Compound words: The CAOSS model

I For compound words in the CAOSS model, the process is the
same as described for the FRACSS model, with three
differences:

I For the train composition.py function, use -m full add

instead of -m lexical func

I The training set (containing all compounds and their
constituents) looks as follows, and all entries (also the first
column) need to be entries in the semantic space

sun rise sunrise

singer songwriter singer-songwriter

I The application set looks as follows, and all entries in the first
two columns need to be entries in the semantic space

sun rise sunrise cmp

monkey ring monkeyring cmp

49 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Compound words: The CAOSS model

I For compound words in the CAOSS model, the process is the
same as described for the FRACSS model, with three
differences:

I For the train composition.py function, use -m full add

instead of -m lexical func

I The training set (containing all compounds and their
constituents) looks as follows, and all entries (also the first
column) need to be entries in the semantic space

sun rise sunrise

singer songwriter singer-songwriter

I The application set looks as follows, and all entries in the first
two columns need to be entries in the semantic space

sun rise sunrise cmp

monkey ring monkeyring cmp

49 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Compound words: The CAOSS model

I For compound words in the CAOSS model, the process is the
same as described for the FRACSS model, with three
differences:

I For the train composition.py function, use -m full add

instead of -m lexical func

I The training set (containing all compounds and their
constituents) looks as follows, and all entries (also the first
column) need to be entries in the semantic space

sun rise sunrise

singer songwriter singer-songwriter

I The application set looks as follows, and all entries in the first
two columns need to be entries in the semantic space

sun rise sunrise cmp

monkey ring monkeyring cmp

49 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Compound words: The CAOSS model

I For compound words in the CAOSS model, the process is the
same as described for the FRACSS model, with three
differences:

I For the train composition.py function, use -m full add

instead of -m lexical func

I The training set (containing all compounds and their
constituents) looks as follows, and all entries (also the first
column) need to be entries in the semantic space

sun rise sunrise

singer songwriter singer-songwriter

I The application set looks as follows, and all entries in the first
two columns need to be entries in the semantic space

sun rise sunrise cmp

monkey ring monkeyring cmp

49 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The DISSECT toolkit
Further functionalities

I Using the compute similarities.py function, you can
already compute similarities between vectors in DISSECT

I For more functions and integration with empirical data
analyses, we will move to R and the LSAfun package to
perform this step

50 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The LSAfun package

51 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The LSAfun package
General Information

I Created during my PhD

I Name: LSA (Latent Semantic Analysis) is an early
distributional model; fun for functions

I For computations on semantic spaces, but not creation of
semantic spaces

I Includes some useful functionalities for working with semantic
spaces

52 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The LSAfun package
General Information

I For a complete tutorial, see

Günther, F., Dudschig, C., & Kaup, B. (2015). LSAfun – An
R package for computations based on Latent Semantic
Analysis. Behavior Research Methods, 47, 930-944.

I Core functionalities:
I Computing similarities

I Neighborhood computations

I Plots and multidimensional scaling

I Other applied functions

53 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The LSAfun package
Starting your R session

1. Open R or RStudio

2. Open a script or create a new script

3. Set the working directory to the most convenient path, such
as:
setwd("G:/Lehre/Spring School Bolzano 2021/"))

54 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The LSAfun package
First step: Loading a semantic space

Loading a semantic space

I From plain text (example: space- or tab-separated file):

myspace <-

as.matrix(read.table("file.txt",row.names = 1))

I This can take quite a bit of time depending on the size of the
file

I From R’s .rda format (as on
https://sites.google.com/site/fritzgntr/

software-resources/semantic_spaces):

load("filename.rda")

I This is pretty fast also for larger spaces

I Loads an R object already with a variable name

55 / 80

https://sites.google.com/site/fritzgntr/software-resources/semantic_spaces
https://sites.google.com/site/fritzgntr/software-resources/semantic_spaces

Getting vectors DISSECT LSAfun Empirical analyses

The LSAfun package
First step: Loading a semantic space

Now you!

I Open the R script bolzano STUDENTS.R file in R and set a
useful working directory

I The core semantic space is already saved as baroni.rda

(available in the Materials for this course). Load it using the
load() function.

I Load your compositional spaces in the dense matrix format
(named COMPOSED...dm) using the read.table() function.

I Use the rbind() function to combine all spaces into one big
space named myspace:,
myspace <- rbind(space1,space2,space3)

Note: Make sure that no row names are duplicated
56 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The LSAfun package
First step: Loading a semantic space

Inspecting the space

is(myspace) what kind of object is it?
str(myspace) the structure of the object
nrow(myspace) number of rows
ncol(myspace) number of columns
dim(myspace) dimensionality of the matrix
rownames(myspace) the row names
head(rownames(myspace)) only the first row names
head(myspace) the first rows of the matrix
any(duplicated(rownames(myspace))) any duplicated row names?

57 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The LSAfun package
Computing similarities

Core function:

Cosine("word1","word2",tvectors = myspace)

I tvectors defines the semantic space in which the similarity is
computed
(needs to be a numerical matrix)

I word1 and word2 need to be entries of the semantic space
(more specifically, they need to be elements of
rownames(myspace))

58 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The LSAfun package
Computing similarities

multicos("word1 word2 word3",tvectors = myspace)

multicos("word1 word2 word3","word4 word5", tvectors

= myspace)

I Input can be of format
"word1 word2 word3" or c("word1", "word2",

"word3")

I Input can also consist of single words

I Computes a cosine matrix including all pairwise similarities

I If no second argument is provided, the first argument will
automatically be repeated as the second

59 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The LSAfun package
Computing similarities

Now you!

I Compute the semantic transparency (in relatedness terms) of
unhappy: Cosine similarity between happy and the observed
vector for unhappy

I Compute the semantic transparency (in compositional terms)
of unhappy’: Cosine similarity between happy and the
compositional vector for unhappy

I Compute the compositionality (meaning predictability) of
unhappy: Cosine similarity between the observed and
compositional vector for unhappy

I Repeat for union

60 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The LSAfun package
Computing similarities: Additional functions

costring("word1 word2 word3","word4 word5",tvectors =

myspace)

I Input can be of format
"word1 word2 word3" or c("word1", "word2",

"word3")

I Input can also consist of single words

I Computes the cosine between the two “sentences/
documents”

I Vectors for “sentences/ documents” defined as vector sum of
the individual words

61 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The LSAfun package
Computing similarities: Additional functions

multicostring("word1 word2 word3","word4

word5",tvectors = myspace)

I Input can be of format
"word1 word2 word3" or c("word1", "word2",

"word3")

I Input can also consist of single words

I Computes the cosine betweens the “sentence/ document” in
the first argument and all the words in the second argument

62 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The LSAfun package
Computing similarities: Additional functions

pairwise(c("word1", "word2", "word3"),c("word4",

"word5", "word6"),tvectors = myspace)

I Computes pairwise similarities between the first elements in
the two vectors, the second elements in the two vectors, and
so on (here: word1–word4, word2–word5, word4–word6)

I Useful when working with lists of words in a dataframe (the
most common data type in R)

63 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The LSAfun package
First step: Loading a semantic space

Now you!

I Run the few lines of code directly under ## create data

frame with affixed words and stems – how does the
resulting object dat look like?

I Compute the compositionality (similarity between observed
and compositional vectors for a complex words) for all complex
words in dat and store the result as a new column in dat

I To access an individual column of a dataframe such as dat,
use for example dat$Word

I You can use dat$newvar <- VALUE to create a new colum in
dat

64 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The LSAfun package
First step: Loading a semantic space

Now you!

I Repeat for semantic transparency (similarity between stem
and complex word), both for the relatedness version and the
compositional version of semantic transparency

I Compute the correlation between the three variables, using
cor(dat$varname1,dat$varname2)

At the same time, have a look at these relations:
plot(dat$varname1,dat$varname2)

65 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The LSAfun package
Exploring neighborhoods

I At first sight, distributional vectors are somewhat opaque:

I What do these numbers mean?

I How do I know if my model does anything sensible?

I We already looked at a good option: Calculating similarities to
other words

I This is especially straightforward for complex words (which
have a stem) and compositional vectors (which can have an
observed counterpart)

66 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The LSAfun package
Exploring neighborhoods

I We now use these similarities to explore neighborhoods

I n nearest neighbors of a word = n words with the highest
cosine similarity to that word

67 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The LSAfun package
Exploring neighborhoods

neighbors("word", n = 50, tvectors = myspace)

I Define the word, the number of neighbors, and the semantic
space you want to search in

I Can take a bit of time depending on the size of the semantic
space: Needs to calculate cosine similarities between the word
and all other words in the semantic space

68 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The LSAfun package
Exploring neighborhoods

Now you!

I Select a word with a high compositionality score (uninstall),
and compute the 50 nearest neighbors of its observed vector

I In the baroni space of observed vectors only

I In the combined space with all observed and compositional
vectors

I Repeat the same for the compositional vector of (uninstall)

I In the combined space with all observed and compositional
vectors

69 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The LSAfun package
Exploring neighborhoods in a graph

plot neighbors("word", n = 50, tvectors = myspace)

I In principle, same syntax as the neighbors() function

I Projection of the high-dimensional neighborhood onto a
low-dimensional space (2D plane or 3D space)

70 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The LSAfun package
Exploring neighborhoods in a graph

Further optional arguments (see ?plot neighbors):

I dims: Dimensionality of the plot

I connect.lines: How many lines connecting each word to
other words

I start.lines: Draw lines from the word whose neighborhood
is displayed?

I cex: Size of words in the plot

I alpha: Luminance of the lines

I alpha.grade: Proportionally scaling the luminance of the
lines

I col: Color of the lines
71 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The LSAfun package
Exploring neighborhoods in a graph

Now you!

I Again, for a word with a high compositionality score
(uninstall), plot the 50 nearest neighbors of its observed
vector in the combined space with all observed and
compositional vectors (using a 3D plot)

I Play around with some options

I Repeat for the word’s compositional vector

I Repeat both for a word with a low compositionality score
(unfabulous)

I Repeat for the compositional vector of a novel word – does
the output seem sensible?

72 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The LSAfun package
Empirical analyses

I Looking at similarities and neighborhoods is nice, but not a
systematic investigation

I When investigating morphological representation and
processing, we want to compare our model predictions against
actual empirical data

I Two purposes:

1. Evaluate the model: Does it make sense?
2. When evaluated, use the model to investigate empirical

questions

73 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The LSAfun package
Empirical analyses

I Looking at similarities and neighborhoods is nice, but not a
systematic investigation

I When investigating morphological representation and
processing, we want to compare our model predictions against
actual empirical data

I Two purposes:

1. Evaluate the model: Does it make sense?
2. When evaluated, use the model to investigate empirical

questions

73 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The LSAfun package
Empirical analyses

I Looking at similarities and neighborhoods is nice, but not a
systematic investigation

I When investigating morphological representation and
processing, we want to compare our model predictions against
actual empirical data

I Two purposes:

1. Evaluate the model: Does it make sense?
2. When evaluated, use the model to investigate empirical

questions

73 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The LSAfun package
Empirical analyses

This is not a statistics or data analysis class, so we will focus on
very simple examples:

I Correlation between semantic transparency/ compositionality
and processing times

I Correlation between semantic transparency/ compositionality
and ratings

74 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The LSAfun package
Empirical analyses: Basic steps

Reading a dataset in R

I Use any of the generic read functions in R, such as

I read.table() for plain text

I read.csv() or read.csv() for .csv files

I If the first line of the document contains the variable names
(usually the case), use the argument header = T; otherwise,
use header = F

I If you are unsure about the functions, arguments, and options,
you can always use Import Dataset in RStudio

75 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The LSAfun package
Empirical analyses: Basic steps

Merging datasets

I You often need to combine several separate datasets into one:
Assume that one dataset contains words and their response
times, and the other contains words and their semantic
transparency scores

I The merge() function in R: merge(dat1,dat2)

I Will identify identical column names in dat1 and dat2, look
for common entries, and merge the files at these common
entries

76 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The LSAfun package
Empirical analyses: Basic steps

Merging datasets: Examples

77 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The LSAfun package
Empirical analyses: Basic steps

Now you!

I Read the file derived words ST.txt (in the Materials for
this course) and save it as fracss

(Source: Marelli, M., & Baroni, M. (2015). Affixation in semantic space:

Modeling morpheme meanings with compositional distributional

semantics. Psychological Review, 122(3), 485–515.)

I Make sure that the column names in fracss and the dat

object containing our distributional measures (created in the
previous step) can be matched (using head(), names(), or
colnames())

I Merge fracss and dat

78 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The LSAfun package
Empirical analyses: Basic steps

Now you!

I Compute the correlation and plot the relation between ST
ratings and

I our model’s ST (relatedness version)

I our model’s ST (compositional version)

I our model’s compositionality

79 / 80

Getting vectors DISSECT LSAfun Empirical analyses

The LSAfun package
Empirical analyses: Basic steps

Now you!

I Read the file ELP data.csv (in the Materials for this course),
save it as elp, and merge it with dat

(Source: Balota, D.A., Yap, M.J., Cortese, M.J., Hutchison, K.A.,

Kessler, B., Loftis, B., Neely, J.H., Nelson, D.L., Simpson, G.B., &

Treiman, R. (2007). The English Lexicon Project. Behavior Research

Methods, 39, 445-459.)

I Create a new column named logRT that contains
log-transformed Lexical Decision Times (apply the log()

function to column I Mean RT)

I Compute the correlation and plot the relation between this
log-transformed LDT and
I our model’s ST (relatedness version)

I our model’s ST (compositional version)

I our model’s compositionality

80 / 80

	Getting vectors
	DISSECT
	LSAfun
	Empirical analyses

