Unexpected Productions May Well be Errors

Tylman Ule* and Kiril Simov'

*Seminar fur Sprachwissenschaft
Universitat TUbingen
ule@sfs.uni-tuebingen.de

fLinguistic Modelling Laboratory
Bulgarian Academy of Sciences
kivs@bultreebank.org

Abstract
We present a method for detecting annotation errors in treebanks. It assumes that errors are unexpected small tree fragments. We generate
statistics over configurations of these fragments using a standard statistical test. We use the test result and the characteristics of their
distributions as features to classify unseen configurations as likely errors via machine learning. Evaluation shows that the resulting list
of error candidates is reliable, independent of corpus size, annotation quality, and target language.

Setting up language resources involves considerable ef-
fort, because human intervention is inevitable and costly.
Human annotators are essential, because they usually out-
perform automatic methods in terms of annotation accu-
racy, but they still make their own kind of errors. In addition
to genuine mistakes, they do not always behave identically
each time when presented with the same infrequent prob-
lem. Thus one can expect a number of errors to be present
in any hand-built language resource.

We divide these errors into the following categories: vi-
olations of the annotation guidelines and violations of lan-
guage principles not covered by the annotation guidelines.
Additionally, following Blaheta (2002), errors can also be:
detectable — errors that are easy to spot and fix by using
queries over the annotation that define impossible configu-
rations and transformations for correction; fixable — errors
which can be found automatically, but that require human
intervention for correction; systematic inconsistencies — er-
rors which are not covered by the annotation guidelines,
or errors not described precisely enough in the guidelines.
These two classifications of errors in annotated corpora are
orthogonal, but not independent: we can expect errors that
are violations of the annotation guidelines to be usually de-
tectable and fixable, and those that are a violation of lan-
guage principles, but not covered by the annotation guide-
lines, to be more frequently systematic inconsistencies.

Each class of errors requires a specific way for detec-
tion and correction. Detectable errors covered by the guide-
lines are the easiest in this respect. They can be addressed
by encoding the guidelines in a formal way and by test-
ing the corpus for consistency. Detecting the other types
of errors requires additional linguistic knowledge. Such
knowledge is not always available or easy to acquire, so
that other mechanisms are desirable for error detection. We
divide those methods into symbolic and non-symbolic ap-
proaches. The symbolic approaches are based on (linguis-
tically motivated) pattern matching selecting possible de-
viations from linguistically correct occurrences. Patterns
can be devised by human annotators, or they can be ex-
tracted (semi-)automatically from the corpus itself. The
non-symbolic approaches use statistical methods to find
rare events in the annotated corpus, where an event is a
certain fragment of the annotation. In general, these meth-
ods can find errors in each of the above categories, but they

are especially useful when pattern-based approaches are not
easily applicable, because patterns are difficult to find.
We present such a non-symbolic method that attacks er-
rors and inconsistencies in structural annotation, and that
shows good performance across languages and annotation
schemes. We detect errors and inconsistencies that appear
as unexpected events in a corpus using a variant of Directed
Treebank Refinement (DTR; Ule, 2003) on artificially in
troduced errors and apply machine learning (ML) to pro-
duce fully automatically a list of likely error candidates.

1. Methodsand Data
1.1. Unexpected Productions

DTR aims at spotting productions of nonterminal nodes
in treebanks that behave not as expected when they appear
in certain contexts. DTR looks at all types of nonterminal
nodes f; in atreebank and compares the distribution of each
of f;’s productions over the whole treebank with its pro-
ductions when appearing under a certain parent node (the
context type k: ¢;;). DTR is applied iteratively, and in each
iteration it delivers a single type of focus node f; that has
the most unexpected distribution of productions in a certain
context ¢;. We compare the distributions of the m different
production types p;,, of node f;, where production means
sequence of direct children. In order to compare these dis-
tributions, we employ the x? metric, which computes the
sum of squared differences between expected and observed
frequencies of node type f; having production type p;,, in
context type ¢;x, normalised by the expected frequency:

2
=Y (expfreq(cik, pim) — obs freq(cik, pim))
““ expfreq(cik, Pim)

m

The x? statistical test prescribes minimal values for
expected and observed frequencies. With lower values,
the test yields higher significance than it should, making
it statistically unsound. We use this as a feature, and
(mis-)employ the y? test for spotting errors: very unex-
pected events (exp freq(cik, pim) < 1) are rated high even
when occurring few times (e.g. when obs freq(cik, Pim) =
1 and expfreq(cik, pim) = 1/1000, then x?, ~ 1000).
An event thus is a (context, focus, production) triple:
(cik, fi, Pim). We argue that very unexpected events, that
moreover occur rarely in a corpus, may well be errors. We
call these events error candidates.

1.2. Ranking Error Candidates

DTR typically involves several hundred iterations, and
each iteration covers a focus node in context with many
different productions, yielding a high number of candidate
errors. In order to focus on the most likely candidates, we
choose to employ a supervised ML regime using memory-
based learning implemented in Timbl (Daelemans et al.,
2003).1 We introduce artificial errors into the corpus and
generate the following features that characterise error can-
didates from the (c;, fi, pim) triples, resulting in positive
training data:

obs freq(cik, pim) 0OCcUrrences observed in the corpus
expfreq(cik, pim) the expected number of occurrences

2
(efpfreq(cik sPim)—o0bsfreq(cik 7pim))

. S 5
czpfrear i) its contribution to x 3,

x%. the overall x?, overall m

termratio fraction of overall x?, contributed by this triple
rank triple is rank highest contributor to x %,

rankratio the relative position as contributor: rank/m
alt the number of other contributors to x%, i.e. m — 1
obsfreq(cik, > fi) the number of times ¢;;, dominates f;
iter the iteration of DTR detecting (cix, fi, Pim)

iterratio fraction of iter from all DTR iterations

The motivation for the above list of features is to present
all non-symbolic information to Timbl that could be rele-
vant for identifying errors. Output of the ML stage is four
classes: error in f, error in p, error in ¢, or no error. Com-
binations are not represented as separate classes: f also is
used when an additional error occurs in p or ¢, and p is the
class also for errors in p and ¢. Having more classes or just
binary classes did not improve precision but harmed recall
on the most reliable focus node.

Our method of error detection (ED) is based on the
ranking of the error candidates with respect to the parame-
ters provided by DTR. We apply ML techniques to support
ranking the error candidates because the actual ranking is
hard to define explicitly, as there are many dependencies
among the parameters. However, recall of ML is rather low
overall, so that we rejoin the ML output with all other error
candidates. We sort the resulting list of triples so that gen-
erally triples marked as errors by ML and occurring less
frequently are given first. The sort keys we use are (with
matching list items sorted first):

1 obsfreq(cik,pim) <3 6 smaller

2 ML says focus node error expfreq(cik, Pim)
3 ML predicts some error 7 higher rankratio
4 rankratio = termratio 8 higher termratio
5 smaller obsfreq(cik, pim) 9 lower iterratio

The sort keys 2 and 3 account for the ML’s reliable clas-
sification. Key 4 prefers focus nodes that have few but
equally unexpected productions. The other keys generally

1We use Timbl version 4.3.1 for our experiments.

rank those events higher that are less expected, and that oc-
cur infrequently. This sorting combines all information ac-
quired by ED in a single ordered list. The resulting list of
error candidates is presented to a human annotator, who has
to judge whether the errors are true positives.

1.3. The BTB and TB Treebanks

We apply ED to two manually annotated treebanks:
BulTreeBank and Tibinger Baumbank des Deutschen /
Zeitung. BulTreeBank (BTB) is an HPSG-based treebank
for Bulgarian annotated with detailed syntactic information
(Simov et al., 2001). It contains more than 10000 sen-
tences that have been extracted from grammars of the Bul-
garian language and from electronic texts. Its annotation
scheme is constituency-based. However, each constituent
is additionally classified with respect to head-dependant re-
lations like: head-complement, head-subject, etc. Keeping
the original word order unchanged, we have introduced dis-
continuous constituents. The reference interaction among
the constituents is expressed by coreferential relations. In
the experiments reported below we use the most elaborated
part of the treebank, which consists of 580 sentences.

The second treebank under consideration is the
Tibinger Baumbank des Deutschen / Zeitung (TB; Telljo-
hann et al., 2003). It consists of texts from the newspaper
taz which are annotated according to the topological field
model of German, and also including constituent structure,
where the constituents are marked with their grammatical
function in the clause. We use four data sets for our ex-
periments, consisting of less revised data (early), almost
finished data (late), and release data (release), which in-
cludes the sentences of the early and late data sets, but
which has undergone more extensive revisions (see table 1
for the sizes of the data sets).?

ED is implemented to operate on a data model that we
call the export model (Brants, 1997). It represents linguis-
tic annotation as directed acyclic graphs with labeled nodes
and edges. ED operates on this data model, only ignoring
secondary edges. It is significant how the structure of the
annotation in a treebank is represented in the export model,
because this representation determines the distribution of
the relevant events. When generating the export represen-
tation of the data sets, we decided to ignore information
about grammatical functions in order to overcome sparse
data problems caused by infrequent lexical information.

1.4. Evaluation via Artificial Errors

Evaluation of methods similar to ours is a challenge, be-
cause the original training material is meant to be error free,
and the results can only be evaluated indirectly by manually
checking whether the method discovers some errors in the
treebank, which only yields precision, but not recall of the
method. Thus we need a corpus of errors for training and
testing. In order for the resulting corpus to be objective,
we decided to introduce artificial errors automatically and
randomly by permuting node labels in a given percentage
of all nodes. This procedure has the advantage of introduc-
ing a set of errors with given properties, such as the number

2The release data set is available at ht t p: / / www. sf s.
uni - t uebi ngen. de/ de_t uebadz. shtm .

of the introduced errors, their nature (via changing the list
of the categories involved), or the places to introduce them
(via patterns for selecting a subset of nodes in the treebank).

We are aware that randomly changing node labels does
not resemble all kinds of errors equally well, but will be
more similar to typos (where a wrong label is acciden-
tally selected) than to misinterpreted larger structures. Ran-
domly changed node labels may even be correct according
to the annotation guidelines when the guidelines do not pre-
scribe a single solution. It will be useful, though, when

those parts of the guidelines become apparent.

datasets.

2. Experimentsand Results

We perform two sets of experiments that concentrate on
the ability of ED to spot artificial errors, and on its ability to
spot errors in the original data. For evaluating ED’s ability
to detect artificial errors we inject errors into 0.01%, 0.1%
and 1% of the nodes in the BTB, and TB early/late/release
DTR is applied to these twelve data sets with
the stopping condition of o < 1.3 Each resulting list of
error candidates is classified by ML using ten-fold cross-
validation and then sorted to produce a ranked list as ex-
plained above. Table 1 shows the number of artificial errors
introduced into the datasets and the overall number of these
errors covered by the full list produced by ED (i.e. all er-
rors present in some part of the (¢, f, p) triples in the list).
Table 2 shows precision and recall of the ML stage for the
focus error class.

| BTB | TBlate | TBearly | TBrelease |

sent. 580 3074 7398 15260
nodes || 15013 | 56601 | 132640 | 318596
1.00% || 155/44 | 579/362 | 1279/856 | 3168/2641
0.10% || 12/5 | 57/38 | 125/90 | 306/246
0.01% || 2/0 10/6 10/8 35,26

Table 1: Artificial Errors Introduced/Detected

1.00% || 42/35 | .72/.72 | 60/.65 | .68/.69
0.10% || 0.0/0.0 | .49/59 | .44/61 | .73/.69
0.01% || 0.0/0.0 | 0.0/0.0 | 0.0/0.0 | .30/.30

Table 2: ML Precision/Recall for focus Errors

In addition to the number of errors present in the ED
list it is most relevant how much human labour is needed to
decide whether an error candidate is an actual error.* Given
that human labour involved in finding an error is propor-
tional to the number of corpus positions that have to be

checked to find a true error, figures 1 (a) to (c) show the

amount of labour necessary to find a given proportion of
the artificial errors. They plot the number of wrongly pro-
posed error candidates per correctly identified error, i.e. the
number of corpus positions without error you have to check
manually until you find an error. Going through the list top-
down, the X axis shows the percentage of all artificial errors

3In a statistically valid experiment o is the certainty that the
null hypothesis of two distributions being equal can be rejected.
“Note that a single (cix, f:, pim) Can occur often in a corpus.

covered by the top ranks of the list so far. Figure 1 shows

that for all combinations of size and language of treebanks,

and for all relative numbers of artificial errors, ED points to
many true artificial errors first. It shows good performance
in that for spotting up to 25% of all errors, you have to

check at most ten corpus positions per error. In most cases

you find more than 50% of the errors by looking at two cor-
pus positions per error. The method seems to be applicable

already to relatively small corpora (BTB), and it performs

well for unfinished (TB early) as well as for highly edited
data (BTB and TB release). As expected, it seems to be

easier to spot errors in cleaner and larger data sets.

100

(a) artificial errors in 1% of all nodes

false positives per true error in list

0.001
0

1000

BulTreebank

TuBa-D/Z early -------

TuBa-D/Z late --------
TuBa-D/Z release

b I I
10 20 30 40 50 60 70 80 90
% of all errors at start of list

(b) artificial errors in 0.1% of all nodes

10 |

false positives per true error in list

0.01

BulTreebank

TuBa-D/Z early -------

TiBa-D/Z late --------
TiiBa-D/Z release

10000

1000

false positives per true error in list

.
10 20 30 40 50 60 70 80 90
% of all errors at start of list

(c) artificial errors in 0.01% of all nodes

100

BulTreebank

TuBa-D/Z early -------

TiBa-D/Z late --------
TuBa-D/Z release

.
10 20 30 40 50 60 70 80 90
% of all errors at start of list

Figure 1: False Positives in Top Ranks of Error List

The second set of experiments tries to evaluate the rel-
evance of ED for detecting errors in the original data sets.
For one of the above experiments (BTB, 0.1% art. errors)

we checked whether there are errors in the original data

among the first candidates of artificial errors. We found that
among the first 27 error candidates, there were 11 errors.
The remaining 16 candidates include five examples where
the guidelines are unclear, and eleven productions that are

correct, but rare. We performed a similar experiment for

TB, checking the highest ranked candidate errors of the re-

lease data set that are found by training Timbl on data with

0.01% artificial errors and applying it to the original, clean
data. The resulting ED list shows 12 errors and 3 unclear

cases among the first 20 candidates. Errors included e.g. a
finite verb within an infinite verbal phrase, and a missing
field node between sentential and phrasal nodes. Rerun-
ning the same experiment with Timbl trained on data with

0.1% artificial errors results in 2 errors and 9 unclear cases
among the first 30 candidates, indicating that the training
data should resemble the rather clean target data.

It is likely that randomly changing node labels does not
resemble well the distribution of naturally occurring errors.
We are optimistic, though, that only few kinds of natural
errors cannot be detected at all, because figure 1 shows
that more than 75% of all errors can be found for large and
clean datasets. We plan to inspect the remaining error types
closely in the future in order to reveal which errors gener-
ally cannot be detected.

3. Discussion and Related Wor k

ED focuses on errors that distort the probability distri-
bution of context-free productions. While these errors may
only be a subset of all errors, we believe that they are very
relevant for improving the usefulness of a corpus as a train-
ing resource for parsers, because probabilistic parsers usu-
ally condition the probability of a node’s production fully or
partly on the node label. ED can thus be seen as a means to
clean a corpus from errors particularly harming parser per-
formance. The abstract units, considered in this work, are
defined as a context-free grammar, i.e. productions in the
context of a parent node. But the method is not restricted
to this definition of (c, f, p) triples. Hence, it can also be
defined in terms of e.g. dependency relations.

There are several lines of related research. Dickinson
and Meurers (2003) use the notion of variation n-grams —
a sequence of word form tokens with different annotations
in different occurrences in the corpus. The variations be-
tween n-grams are likely errors in the corpus. Their method
is similar to ours in that potential errors need to be inspected
by humans. However, in our case there is a measure which
helps us to rank candidate errors. In their method, the con-
text of potential errors is defined by (lexical) word form to-
kens, whereas we use syntactic categories rather than word
forms. Kveton and Oliva (2002) show how errors can be
detected in POS-tagged corpora. Their approach is based
on searching for impossible n-grams in a corpus. They di-
rectly point to the occurrences of errors, but at the same
time their method depends on hand-crafted definitions of
relevant n-grams. An advantage of this method over ours
is that it is in principle able to detect errors that occur sys-
tematically in certain contexts; however, it requires more
linguistic knowledge.

Each corpus contains two types of linguistic informa-

tion: explicit and implicit. The former is usually given in
the documentation of a corpus, and the latter is based on
the annotators’ intuition encoded in the particular annota-
tion; both can be erroneous. As pointed out before, usually
explicit errors are easy to spot via clear rules. Spotting im-
plicit errors requires at least the following: a description
of the places where these errors may occur, a description
of the context on that the errors depend, and a method for
recognising potential errors in a context. Defining errors
relative to implicit linguistic information to a great extent
requires linguistic intuition and also experiments for ver-
ification. The advantage of our method is that it is not
limited to certain definitions of errors and contexts. More-
over, the model generated in the ML stage of ED abstracts
from language-specific details and thus allows training on
a larger and better developed treebank of one language and
applying the resulting model to a a treebank of a different
language for which less training data is available.

Similar to the other methods for detecting errors, ED
will be most useful in an interactive environment. We there-
fore plan to incorporate it into the CLaRK interactive anno-
tation tool which will also allow changing error and context
definitions easily®

4. Conclusion

We have presented a method for detecting errors and in-
consistencies in the structural annotation of treebanks. The
method is based on the observation that the productions of
nonterminals should behave consistently across all contexts
in a corpus. We generalise from the output of a statisti-
cal test by applying machine-learning to features extracted
from its output. The method performs well across different
languages and sizes of corpora, and it seems to be equally
applicable also to corpora that still undergo annotation.

5. References

Blaheta, D., 2002. Handling noisy training and testing data.
In Proceedings of EMNLP 2002. Philadelphia, USA.
Brants, T., 1997. The NeGra Export Format for Annotated

Corpora. Computerlinguistik, Univ. des Saarlandes.

Daelemans, W., J. Zavrel, K. van der Sloot, and A. van den
Bosch, 2003. TiMBL: Tilburg Memory Based Learner,
version 5.0, Ref. Guide. Technical Report 03-10, ILK.

Dickinson, M. and W. D. Meurers, 2003. Detecting in-
consistencies in treebanks. In Proceedings of TLT 2003.
Vaxjo, Sweden.

Kveton, P. and K. Oliva, 2002. (Semi-)automatic detection
of errors in PoS-tagged corpora. In Proceedings of COL-
ING 2002. Taipei, Taiwan.

Simov, K., G. Popova, and P. Osenova, 2001. A Rainbow
of Corpora: Corpus Linguistics and the Languages of
the World, chapter: HPSG-based syntactic treebank of
Bulgarian (BulTreeBank). Munich: Lincom-Europa.

Telljohann, H., E. W. Hinrichs, and S. Kibler, 2003.
Stylebook for the German Treebank of Written German
(TuBa-D/Z). Sem. fiir Sprachwiss., Univ. Tubingen.

Ule, T., 2003. Directed Treebank Refinement for PCFG
parsing. In Proceedings of TLT 2003. Vaxjd, Sweden.

SAvailable at ht t p: / / www. bul t r eebank. or g/ cl ar k.

