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1 Introduction

The linguistic annotation of a treebank conforms to an annotation scheme, which
has to serve several purposes. It should be easy to understand and follow by human
annotators, and it should naturally express the syntactic structure assumed for the
sentences under consideration. Treebanks may also serve as a resource for Natural
Language Processing, where the goal often is to perform a certain task automatic-
ally, based on training data derived from the treebank. Since all three of annotation
scheme, goal of automatic annotation, and annotation method are mutually inter-
dependent, one or more of them may be modified to improve performance on a
given task. In this paper, we focus on the task of Topological Field Parsing using a
German treebank (TüBa-D/Z) as input and a Probabilistic Context-Free Grammar
(PCFG) as parsing method. We deliberately choose to keep both the goal of the
annotation, and the annotation method fixed, and propose to examine the effect of
treebank transformations on performance. For this purpose, we apply nonterminal
split and merge operations that we callDirected Treebank Refinementto transform
the structure of a treebank, aiming at encoding the same information in a way more
suitable for the parsing task at hand.

PCFGs are the backbone of many current broad coverage, high accuracy pars-
ing systems [5, 6]. What makes PCFGs interesting for this task is that there exist
efficient algorithms to find all parses given a context-free grammar (CFG), and to
find the best parse given additional rule probabilities (hence aPCFG).

1.1 Limitations of Context-Free Natural Language Parsing

The application of a Context-Free Grammar to parsing natural language assumes
that all relevant syntactic phenomena only have limited context sensitivity and that
syntactic structure can be encoded by proper trees. It is well known that the lat-
ter assumption is violated for some syntactic constructions in different languages,



because some phenomena cannot be encoded without crossing edges. The former
assumption depends on the kind of structure you assume for a given utterance.
For example, in prepositional phrase (PP) attachment you typically have to decide
whether to attach aPP to a noun phrase (NP) or to the verb dominating bothPP
andNP. However, normally the head words of theNP, thePPand of the including
clause are not present in the labels, so that the expansion of yourNPnonterminal
cannot take into account the relevant context, which forPP attachment includes
lexical information about theNP, PP and verbal head words [8]. In languages
with less restricted word order than English, this problem tends to be still more
severe, because more information relevant to disambiguate syntactic structure is
present at the terminal level, but usually not represented in the node labels (e.g.
morphological case markers for German). As a result, the absolute restrictions
of context-free syntactic parsing may be less severe than the restrictions resulting
from a certain way of encoding syntactic structure.

1.2 Adding Context-Sensitivity

Research on English using the Penn Treebank seems to converge on a set of use-
ful additional contextual features for extending PCFGs [7, for an overview table].
However, these features seem to be language (and also annotation) dependent. For
English, tree transformations incorporating the parent node improve performance
for almost any kind of substructure [10]. Flattening the original structure, or in-
troducing more levels, also has an impact on performance, which, however, is less
consistently beneficial. This result agrees with another study, that analyses the im-
pact of another set of tree transformations on PCFG performance [1]. In this study,
nonterminal node labels are enriched with information concerning the parent node,
the depth of embedding, and grammatical functions. Again, the most consistent
improvement results from using parent nonterminal information. Another study
applies an extended PCFG model to German that was originally developed for
English [7]. It shows that because the annotation of their data tends to be flatter
than the corresponding English annotation structure, some of the PCFG parser’s
extensions have to be adapted to improve performance.

All these approaches have in common that incorporating contextual informa-
tion into PCFG parsing improves performance, and that the interesting context is
defineda priori, either by conditioning the model on this context [6, 7], or by ex-
tending the node label with contextual information [10, 2]. The former approaches
that integrate contextual features into their PCFG model usually define backup
strategies that use a subset of information in case not all necessary information is
available. The latter approaches, that extend node labels with contextual informa-
tion, cannot easily apply such a backup strategy, leading to sparse data problems.



Given e.g. the parent node transform, a new node label is introduced for each com-
bination of node label plus parent node label. This will generally result in less than
jN j2 new node labels for nonterminal node label setN , because annotation struc-
ture allows dominance relations only between certain sets of nonterminals. Still, a
high number of new node labels is introduced, and consequently, in a supervised
learning regime, the amount of manually annotated sample data per nonterminal
decreases.

To summarise, there is much evidence that incorporating more contextual in-
formation into PCFGs can be beneficial. The remaining question is, which inform-
ation exactly to incorporate, and how to incorporate it into PCFG parsing. We
also choose to transform the structure of labelled input data to add contextual in-
formation, and we expect that the ideal transformation uses different node labels
everywhere, and only where, different context causes PCFG productions to be dif-
ferent. We believe that Directed Treebank Refinement (DTR) presented here is
able to detect this information at least partially.

2 Data and Methods

2.1 The German Treebank TüBa-D/Z

TheTübinger Baumbank des Deutschen / Zeitung(TüBa-D/Z) is a treebank which
is manually annotated with syntactic information similar in spirit to [16], but annot-
ating text from the newspaperdie tageszeitung(taz) instead of spontaneous speech.
It follows the Topological Field model for German [9]. Grammatical functions are
annotated as edge labels (see figure 1). Crossing edges do not occur in TüBa-D/Z
despite the relatively free word order of German, because the topological fields
sequentially group the words of a sentence, and edge labels coindex relations that
cross the fields (e.g. a relative clause modifying an accusative object receives the
label OA-MOD, so that intervening parts of the verbal group do not disturb the
proper tree). The process of annotation is not yet finished. Hence we extracted the
subset of annotated sentences.1 We also restrict all our experiments to sentences
with length of up to 40 words. The TüBa-D/Z data consists of five days from the
taz newspaper (May 3–May 7, 1999). The last two days have received most ex-
tensive checks, so that we select data from them as test data. We use a small and a
large data set as shown in table 1.

1We assume that a sentence is annotated when each terminal has at least one dominating nonter-
minal.
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Figure 1: TüBa-D/Z sample sentence

small sentences words large sentences words

train 7398 118650 train 10472 168996
test 3074 50346 test 4001 65834

Table 1: Sizes of large and small train/test data sets

2.2 Preprocessing

For all experiments, we drop edge labels encoding grammatical functions which
therefore are effectively ignored in parsing and evaluation. Edge labels are used
in TüBa-D/Z also to encode some arguably structural aspects of the annotation,
including heads of constituents and the conjuncts in coordinations. We further
employ edge labels in contrast to the original TüBa-D/Z scheme to represent un-
attached constituents, in order to obtain proper trees. We use thesestructural edge
labelsby adding them to the child node label in part of the experiments we perform.

There may occurcycles2 in thetreebank grammar3 derived from TüBa-D/Z. If
the cycle is present already in the treebank (as opposed to the resulting grammar),
then all dominated node labels involved in the cycle are recursively added to the
dominating node label (see last word in figure 2). We call this method of trans-
forming the treebanktreeb . Alternatively, thegram method attempts to find
the minimal set of productions that removes cycles from the treebankgrammar.
Thegram method generates all different cycles from the grammar and iteratively

2Cycles in the grammar are sets of unary productionsn1 ! n2, n2 ! n3, . . . ,nn! n1, where
n1; : : : nn are all nonterminals.

3We produce a treebank grammar from a treebank by reading off CFG productions from it, and
we estimate production probabilities from the relative production frequencies of nonterminals [4].



assigns the parents in them new names until no more cycles occur. Productions
participating in more cycles and appearing less often in the treebank are changed
first by this method.

For some experiments webinariseproductions of nodes with two or more chil-
dren into right-branching structures where the first child is left in the first level, and
the remaining children are iteratively dominated by copies of the original expan-
ded nonterminal. For handling the last remaining child we choose to introduce a
last copy of the focus node and obtain a final unary production which separates the
information that a node terminates from the category of the last child.

We use the PCFG implementation oflopar 4 for all our experiments, always
using unlexicalised PCFGs, and training only in supervised mode. All experiments
are performed on manually annotated POS tags.

2.3 Directed Treebank Refinement

In this section, we describe a nonterminal split heuristic introduced for a different
PCFG parsing task [3] and a new nonterminal merge heuristic to the context-free
productions in a treebank. The transformation isdirectedat including context into
node labels wherever the distribution of the node’s productions depends on this
context.

2.3.1 Splitting Nonterminals

For splitting nonterminals we adopt the proposal of [3]. They use a PCFG to parse
RNA sequences, modifying a handcrafted CFG by unsupervised learning using
the EM algorithm on unlabelled data.5 We use their refinement heuristic and adapt
their refinement operator (calling it henceforthsplit heuristic/operator), and we add
a merge heuristic that they mention but do not specify.

The split heuristic searches for nonterminals with the same label but different
usage. We define theusageof a nonterminal (thefocus node) to be the distribu-
tion of its productionswhen appearing in a certaincontext. In order to determ-
ine whether two nodes in context are different, we further need to definecon-
text and similarity. Following [3], we define the context of a focus node to be
the label of its parent node, and we define the similarity between two nonter-
minals as the similarity between the distributions of their productions. In or-
der to measure the latter, we use a standard statistical test (�2) and measures
of cross entropy, again following [3]. We now briefly sketch computing�2 in

4lopar is available from http://www.ims.uni-stuttgart.de/projekte/
gramotron/SOFTWARE/LoPar-en.html . We uselopar version 3.0 [15].

5Their data consists of positive and negative examples without structural annotation.



the split heuristic: Given a nonterminaln appearingf(n) times in the corpus,
we observem different productionsp(n) = fpn1; pn2; : : : pnmg with frequen-
cies f(pni). We calculate the probability of each production from its relative
frequencyP (pni) = f(pni)=f(n); i = 1; : : : m. When we only look at the pro-
ductions of a focus node in context, we restrict ourselves to the productions of
n under a certain parent nodec. We can now calculate the expected frequency
of productionpni in contextc > n by multiplying the frequency of the node in
contextf(n; c > n) with the probability of the production in the whole corpus:
fe(pni; c > n) = P (pni)f(n; c > n).6 Finally �2nc is calculated from the differ-
ence between the observed and expected values for all productions of a focus node
n in contextc as follows:

�2nc =
mX

i=1

(fe(pni; c > n)� f(pni; c > n))2=fe(pni; c > n)

Using the�2-test is not possible for cases where only one production occurs
consistently.7 However, focus nodes in context that consistently have unary pro-
ductions, and have different productions in other contexts, most probably should
receive a new node label by the split heuristic. The Skew Divergence (SD) is an
entropy based measure which is able to compare distributions even when they con-
tain only a single production. It is a variant of the Kulback-Leibler divergence
employed in [3] and more robust when not all productions are shared between the
distributions [12]. Using the notation introduced above andP c(pni) to denominate
the probability of productionpni to appear in contextc > n, the Skew Divergence
of a focus noden in contextc is calculated as

SD�;nc =
mX

i=1

P c(pni)[logP
c(pni)� log(�P (pni) + (1� �)P c(pni))]

2.3.2 Merging Nonterminals

We define a new heuristic to spot nonterminal merge candidates. As opposed to
splitting nonterminals, the merge heuristic looks for nonterminals in context that
are similar, i.e. two different nonterminals that have similar sets of productions
when they appear below some (possibly different) parent.

When defining a merge heuristic, the requirements of the�2-test are very often
difficult to satisfy, because both distributions representing candidates for a merge

6We use “>” to express the dominance relationship, while “A! B” denotes a production.
7When minimal sample frequencies are smaller than allowed for obtaining reliable predictions

from the�2 statistical test, we merge classes and do no longer claim to obtain statistically inter-
pretable results.



are the productions of a node in context, and sample frequencies tend to be low.
We therefore only employ the SD metric for merging. As SD is asymmetric, we
choose the bigger SD of both when using it to determine divergence between two
merge candidates. We apply the merge operator only when similarity is transitive.8

Directed Treebank Refinement is a combination of the merge and the split heur-
istics, which can be combined in several ways, e.g. by repeatedly trying to merge
nonterminals before trying to split them, until both attempts fail. However, mer-
ging nodes is more costly than splitting nodes9, and we therefore iteratively split
until �2/SD drops below a certain threshold, and then merge until all�2/SD exceed
a certain threshold, both up to a maximum number of times.

3 Experiments and Results

We examine the effect of DTR on Topological Field parsing (TopF-Parsing), which
is the task of determining the overall sentence structure which for us consists of all
verbal frames, fields, and sentential nodes (see table 4).10 As a result, all comple-
ments and adjuncts are attributed to the correct verbal group, without specifying
their relation to the verb (i.e. their grammatical function) and without specifying
the internal structure of these complements and adjuncts, and their relation to each
other (i.e. their complex internal phrase structure). The TopF parsing task also
includes coordination on the sentential and field level. Recent research seems to
indicate that the topological field structure is a good starting point for parsing Ger-
man, and that it can be seen as an independent parsing task because of its syntactic
rather than lexical nature [14]. TopF-parsing can be considered as the successor
of TopF-chunking, where the verbal parts of each sentence are detected without
connecting them through sentence structure [17].

We perform three sets of experiments. All of them fully consider the attach-
ment of punctuation and other terminals that are never attached to any constituent in
the original treebank. The first experiment aims at answering the question whether
DTR is capable of introducing relevant context into node labels. We binarise the
treebank and apply the split and merge heuristics to it.11 We expect that DTR re-
turns some but not all of the original sequential relations encoded in the broken-up

8This means that we require that whena � b andb � c, that alsoa � c, wherea; b; c are nodes
in context, and� denotes similarity. These restrictions prevent infinite alternations between, e.g.
merging(a; b) and(b; c).

9Merging involves(jN j � 1)jN j=2 tests for similarity, and splitting onlyjN j.
10FKONJreplaces all explicitly named sequences of fields in [16].
11We always set the stopping conditions for splitting to�2 > 10 and SD> 1, iterating at most

200 times, which is reached only for split operations. Merge operations stop at a maximum of 35
iterations for SD< 0:2. We use a fixed� = 0:99 for SD.



Figure 2: Binarised sample sentence after splitting nonterminals (cf. figure 1)

right hand sides of rules into the treebank. See figure 2 for the result of DTR and
table 2 for the relevant split operations. The second set of experiments aims to
relate differences in performance caused by differences in preprocessing, in node
labels, size of training data, and application of DTR to the baseline performance
of training on the unmodified TüBa-D/Z data.12 Table 3 shows the overall results,
and table 4 the performance per node label of the basline model and the best model
not using additional (structural edge) input information. The last set of experi-
ments aims at evaluating all aspects of TopF structure, including structural edge
information (see table 5).

12The results are given asF�=1 for the set of labeled and unlabeled (start position, end position)
tuples of each constituent in the trees of the test set.



nonterminal in context most deviant productions
it. parent > focus f ! production obs. exp.

1 0 SIMPX 7767 VF SIMPX 6430 1649
3 SIMPX-1 SIMPX 8233 LK SIMPX 6208 2116
11 SIMPX SIMPX 10506 VC 4051 2274
13 MF MF 13897 NX-2 MF 1070 2572

45 SIMPX-11 VC 2597 VXFIN:43 VVPP:4
VXFIN VC:1 48 582

71 SIMPX-3 SIMPX 7760 C SIMPX-11:7
SIMPX-11 SIMPX-11:7 14 206

82 MF MF-13 7516 PX 1494 1862
150 MF-13 MF-13 1650 ADVX-100 MF-13 158 231

162 LK VXFIN 9081 VXFIN VXFIN:10
FM:1 VVINF:1 12 62

Table 2: Most deviant productions of split TopF nonterminals from figure 2

3.1 Discussion of Results

Looking at the individual split operations of the first experiment, the rows splitting
SIMPX nodes in table 2 show the desired percolation of contextual information
down the tree. First, the initial element of the main clause is split from the rest
(VF), followed by those elements that naturally follow in the TopF model (LK and
VC). It is also unlikely that anLK is followed by aC-field or twoVCs (it. 71). We
conclude that DTR is generally able to distinguish relevant contexts.

Results of the other experiments indicate that DTR may reduce the error rate
considerably (overall by 30% for the experiments in table 4). DTR seems to be
beneficial in cases where node labels are used consistently for a limited set of pro-
ductions, e.g. in theC-field, which introduces relative clauses in German. The
C-field is often occupied by relative pronouns, which are projected to noun phrases
first, and only then toC-fields. Only noun phrases in theC-field ever contain relat-
ive pronouns, which is not captured well by the original distribution of noun phrase
label productions. Other node types indirectly benefit from improvingC field an-
notation, e.g.F�=1 of relative clauses (R-SIMPX) increases by 45%. Only few
node labels suffer from applying DTR.P-SIMPX , which has the biggest loss of
10%, only occurs 8 times in test data, however.

The performance on full structural TopF annotation (including structural edges)
is only slightly worse than on the original label set (table 5). Surprisingly, the�2

split heuristic seems to work better in combination with thetreeb de-cycling,
as opposed to SD splitting that seems to combine better with thegram method.
Using�2 splitting produces slightly better results here.



small large
de-cycling none treeb none gram treeb

original lab. 84.98 85.33 cyclic 85.53 87.15
unl. 88.73 87.90 89.57 89.52

edges lab. 83.83 84.80 cyclic 85.97 88.24
unl. 87.86 87.25 89.95 90.29

splitSD lab. 88.19 87.36 89.86 89.86 89.57
unl. 90.18 89.50 91.50 91.50 91.36

splitCS lab. 87.57 86.50 cyclic 89.81 89.05
unl. 89.73 88.92 91.59 90.93

splitSD lab. 88.33 87.35 89.90 89.90 89.78
+ merge unl. 90.35 89.42 91.55 91.55 91.43

edg. + splSD lab. 88.19 84.62 90.04 90.04 88.18
unl. 90.34 86.95 91.98 91.98 90.00

edg. + splCS lab. 87.36 84.00 89.84 89.84 87.36
unl. 89.62 86.60 91.65 91.66 89.46

edg. + splSD lab. 88.22 84.63 90.12 90.12 88.26
+ merge unl. 90.26 86.86 91.95 91.95 89.95

Table 3: Overall labelled and unlabelledF�=1 for original TopF labels

label base best label base best

overall 85.53 89.90 VC 97.83 98.41
LV 0.00 35.71 VCE 0.00 0.00

KOORD 81.24 90.80 NF 68.35 71.82
PARORD 0.00 0.00 FKOORD 48.29 47.34

VF 92.45 92.68 FKONJ 63.44 62.83
C 84.25 96.78 P-SIMPX 10.00 0.00

LK 98.81 99.26 R-SIMPX 35.12 80.91
MF 86.60 90.30 SIMPX 77.99 84.96

Table 4:F�=1 per original TopF label type for best transform and baseline

small large
de-cycling none treeb none gram treeb

edges 83.15 83.97 cyclic 85.30 87.53
edges + splitSD 87.51 83.71 89.38 89.38 87.57
edges + splitCS 86.55 87.52 89.08 89.08 89.78
edges + splitSD + merge 87.53 83.72 89.49 89.49 87.64

Table 5: Overall labelledF�=1 for TopF labels with structural edges



4 Conclusion and Future Research

We have applied a modified nonterminal split heuristic as presented in [3] and a
new merge heuristic to a PCFG parsing task that assigns complex clause structure
to POS tagged input, when trained on a hand-labelled syntactic treebank of Ger-
man. Qualitative evaluation on binarised data suggests that DTR is able to include
relevant contextual information into nonterminal node labels, and quantitative eval-
uation shows a performance gain when using DTR before generating the treebank
grammar for training the PCFG.

In order to compare results obtained on different grammar structures, we would
like to apply an evaluation metric that normalises for different structures. Depend-
ency based evaluation lends itself naturally to this task [13, 11], and we therefore
plan to apply it. DTR can be applied to any corpus for which focus nodes, contexts,
and productions can be defined. It will, however, be most useful to support parsing
strategies with limited context sensitivity like PCFGs, or as a means to detect un-
expected usages of nodes, which in the development phase of a treebank often turn
out to be errors. The latter may be easily performed also on corpora using graphs
instead of trees, which is another direction of future research.
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