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Abstract
Support Vector Machines (SVM’s) are used to chunk
topological fields in German, a multi-class classifica-
tion problem on highly unbalanced data. As SVM’s
are originally developed for binary classification we
have to extend them to our multi-class problem. The
negative effects of unbalanced data are compensated
by introducing error penalties. Yet, it is unclear how
to optimize these parameters. We compare several
optimization approaches, amongst them optimization
of SVM-parameters with genetic algorithms (GA’s).

1 Introduction

Topological fields define parts within the German sen-
tence which determine its basic structure of main-
and subclauses. Once topological fields are found,
it is much easier to perform bottom-up parsing steps
like complex NP-chunking or to find grammatical re-
lations. We do topological fields chunking for Ger-
man with Support Vector Machines (SVM’s). This
task presents itself as a 4-class classification problem
on highly unbalanced data. We solve the multi-class
task by a divide-and-conquer-strategy (one-vs-one).
To achieve good results, we have to optimize the hy-
perparameters of the SVM ( � and C’s). We use Ge-
netic Algorithms (GA’s) for this optimization task and
compare three different approaches: one where all C’s
and � ’s are the same for all binary learners, one where
the C’s are chosen differently in each binary learner
and one experiment where both, C and � , are differ-
ent in the binary classifiers. The best results achieved
with the SVM are compared to corresponding results
obtained with a memory based learner.

2 Support Vector Machines

Support Vector Machines (SVM’s)1 (Vapnik 98) are
binary classifiers which try to separate two classes

�
This work has been supported by the German Research

Council (DFG) as part of the Sonderforschungsbereich 441 ”Lin-
guistische Datenstrukturen”. It was done during a stay of the au-
thor at the CNTS at the University of Antwerp. Many thanks to
Walter Daelemans and his colleagues and special thanks to Boris
Terzic, Jorn Veenstra and Tylman Ule.

1For all our experiments described in this paper we used
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(Chang & Lin 01), see http://www.csie.ntu.edu.tw/� cjlin/libsvm.

with a linear hyperplane, which is chosen such that the
distance to the nearest training points becomes max-
imal. A Kernel maps the data into a higher dimen-
sional feature space where it is more probably linear
separable. For reasons of brevity we will not further
introduce SVM’s, please see e.g. (Schölkopf & Smola
02) for an excellent introduction. In our experiments
we will focus on the RBF-Kernel with the Kernel-
parameter � . As the data is not linearly separable, we
use the soft margin approach, where a slack variable
� is introduced and weighed by a constant C which
penalizes training errors. A further extension of this
approach, necessary especially with unbalanced data,
is to weigh training errors of the two relevant classes
differently by assigning a weight C � to the positive
class and a weight C � to the negative class.

Although some approaches have been presented to
solve multi-class problems in one step ((Weston &
Watkins 98), (Lee et al. 01)), we chose to solve
the multi-class classification task by decomposing
the problem into several binary problems (one-vs-
one) and combining their results by majority voting.
This approach is computationally less time consum-
ing, easy to implement and shows comparable results
(Hsu & Lin 01).

How to optimize the C-parameters and � is an item
of ongoing research. Heuristics as proposed in (Chew
et al. 00) do not lead to the best possible output.
Even if we find the optimal weighting for all single
binary classifiers it might well be the case that this is
not the best overall weighting for the combined multi-
class classifier. A brute force search over a variety
of weighting combinations would quickly lead to an
exponentially growing search space and computation
would soon be too time consuming. 2

2With 4 target classes (as in our data) we would have to train
6 binary classifiers. With 10 weighting combinations for each of
them, we would have to test �	��
 combinations. The search space
becomes even bigger if we take into account the search for an
optimal � in the RBF-kernel of each of the binary classifiers.



3 Genetic Algorithms

Genetic algorithms (GA’s)3 try to find an optimal so-
lution through an evolutionary process over big search
spaces. They start with a randomly created set of pos-
sible solutions (chromosomes). Using a fitness func-
tion, the GA calculates the fitness of each chromo-
some in the initial set and builds a first population by
recombining parental chromosomes (crossover) and
performing random changes (mutation). The best
(fittest) chromosomes out of this population are used
as offspring and will form the basis of the next gener-
ation. This process is repeated for a fixed number of
generations or until another stopping criterion is full-
filled.

In our experiments, performed on a cluster of 28
computers, we chose 20 as the population size and 50
as the number of offspring. Crossover is done by uni-
form crossover which means that the bits from both
parents are randomly copied. The crossover rate is
0.6. Mutation rate for C and for � is 0.05. The fit-
ness function in our experiments is the F ����� score4

(Van Rijsbergen 79).

4 Topological Fields Chunking for German

4.1 Topological Fields in German

The theory of topological fields for German (Höhle
85) describes constituents of a sentence which are de-
fined by the finite verb (the left bracket; LK), the infi-
nite verbal complex (VC) and the subordinator in sub-
classes (C-field). For each of the three clause types in
German (verb first - V1, verb second - V2, verb last -
VL), Höhle defines a topological field model in which
the sentence brackets LK, VC and C separate the sec-
tion preceeding the LK (Vorfeld; initial field; VF), the
part of the sentence included by the sentence brackets
(Mittelfeld; middle field; MF) and the section follow-
ing the VC (Nachfeld; final field; NF). In German,
the ordering of the sentence brackets and of the ini-
tial field, the middle field and the final field is clearly
syntactically restricted, whereas the position of other
constituents in the German sentence (like verbal com-
plements) is relatively free. Once the topological field
structure of a sentence is known, we have the bound-
aries of all subclauses in the sentence and can inves-
tigate these smaller structures in a divide and conquer

3As basis of the GA described in this paper we used a ���	� -
EA-implementation done by Bart Naudts, Intelligent Systems
Lab, Department of Mathematics and Computer Science, Univer-
sity of Antwerp, Belgium.

4In order to calculate the F 
���
 score we used the CoNLLeval-
script written by Erik Tjong Kim Sang which is freely available
at http://cnts.uia.ac.be/conll2000/chunking/conlleval.txt.

strategy. It is then much easier to find e.g. the verbal
complements and the number of possible ambiguities
is considerably reduced. Moreover the distribution of
many syntactic phenomena is strongly dependent on
the topological fields. Thus the annotation with topo-
logical fields is a top-down step which simplifies fol-
lowing bottom-up parsing steps considerably. A sim-
ple illustrative sentence can be found in Fig. 1.

4.2 Previous Work on Topological Fields
Chunking for German

(Veenstra et al. 02) have compared three different ap-
proaches to topological fields chunking. They used
Finite State Automata (FSA), probabilistic context
free grammars (PCFG) and a memory-based learner
(MBL). The results of Veenstra et al. are given in Ta-
ble 1.

4.3 Data

The TübaD/Z is a database of currently ca. 9000 hand
annotated sentences taken from the taz newspaper cor-
pus. The annotation scheme of the TübaD/Z mainly
follows the Verbmobil standard (Stegmann et al. 98).
One of our aims was to compare our results with the
previously achieved ones, so we chose the same train-
ing data as Veenstra et al. (4523 sentences from the
TübaD/Z data base). We used their test set, consist-
ing of 1613 sentences, as validation set and 4594 sen-
tences as test set on which we tested the SVM models
as well as the memory based learner from (Veenstra
et al. 02). We performed our experiments on TnT-
tagged data (Brants 00) from the TübaD/Z. This tag-
ger has an overall accuracy of 94.7% on the TübaD/Z.
Following (Ramshaw & Marcus 95), we represented
our data in the IOB-format which results in a mul-
ticlass learning problem with four target classes (O,
I-VC, I-C, I-LK). These four target classes are dis-
tributed over the training data as follows: 80 640 train-
ing points in class O, 6759 in class VC, 2251 in class
C and 5827 in class LK, thus presenting a learning
problem on highly unbalanced data.

ALL LK VC C

FSA 94.1 96.2 92.0 93.8
PCFG 94.4 97.0 92.2 92.3
MBL 93.3 96.0 90.0 91.6
baseline 75.5 75.2 72.3 83.2

Table 1: Results (F ����� score) of Veenstra et al.
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Figure 1: Sentence from the TübaD/Z: ”Hence, it is quite uncertain, of how many pictures there exist how many
duplicates.” (LK: ”ist”; C: ”von wievielen Bildern”; VC: ”existieren”)

5 Experiments

5.1 Features and Data Representation

Following (Veenstra et al. 02), we used the window
approach (2 left, 1 right) and POS-information as fea-
tures (55 possible POS-tags). For LibSVM we en-
coded the features into a 220 dimensional (sparse)
vector.

5.2 Baseline

As a baseline we assigned each instance its most fre-
quent tag and obtained the results on the evaluation
set as shown in Table 1 and on the test set as shown
in Table 5. Additionally we trained LibSVM with the
default-values (C � �

, � � ������ ) and tested it on the
test set (see Table 5).

5.3 LibSVM Model Selection Tool

The LibSVM package contains an easy to use model
selection tool that offers the possibility to find the best
C and � parameter combination for SV classification.
The user can determine the range of C and � values5 .
The tool will then train a model with each combina-
tion of the given parameters. For each model it will
output the accuracy calculated with cross validation
techniques. LibSVM handles multi-class classifica-
tion problems with the same approach we chose (one-
vs-one with majority vote). But note that LibSVM
does not use class (and binary classifier) specific C
and � values but the same C and � -values for both
classes in all binary classifiers..

We ran the LibSVM model selection tool on our
training data with 5-fold cross validation and chose

5In the model selection tool, values x are chosen ���	� ; the
values which are used as parameters in LibSVM are then 
�� .

the values -1 
�
�
 5 for C, and the values -4 
�
�
 1 for
� . The best among the 42 calculated models was the
one with the value 8 for C and the value 0.0625 for �

in LibSVM. This model got a result of 92.14 as F ����� -
score on the test set (Table 5).

5.4 Optimizing C-values

In these experiments we chose a fixed � and tried to
find the best class specific C-values for each binary
classifier by using a GA as presented in Sect. 3. The
chromosomes in the GA consist of integer arrays of
length 12; each position indicating the C � respec-
tively C � value for one of the binary classifiers. With
regard to the number of instances in the single target
classes, we set the range of possible C-values to [0

�
�
 40]. In order to save training time we decided to
reduce the training set for the GA to 65000 instances
according to a learning curve we produced with the
parameters C = 8 and g = 0.0625 (Fig. 2). With the
best parameter combination found by the GA on this
reduced training set, we then trained a model on the
whole training set and tested it on the test set. Ac-
cording to experiences with previous experiments on
the same data we chose the following values for � :
0.0625, 0.125, 0.25, 0.5 and 1. The results obtained
in each generation on the reduced training set can be
seen in Table 2. The best result was achieved with
� ����
�������� . We present an optimal chromosome
in Table 3. The corresponding model (trained on the
complete training set and tested on the test set) got an
F ����� -score of 92.25 (see Table 5).



I-LK/O I-LK/I-VC I-LK/I-C O/I-VC O/I-C I-VC/I-C

C 
 /C � 14/13 10/19 20/18 15/27 16/11 23/10

Table 3: Optimizing C: best chromosome after 15 generations ( � � ��
�������� ). The first row shows which classes
the respective binary classifier focusses on. C � refers to the first mentioned target class, C � to the latter.
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Figure 2: Learning curve trained with LibSVM

gen. 0.0625 0.125 0.25 0.5 1

1 92.90 92.83 92.27 91.80 87.90
2 92.96 92.96 92.40 91.93 87.97
3 93.00 92.96 92.48 91.99 87.98
4 93.08 92.96 92.48 91.99 87.98
5 93.13 92.96 92.51 91.99 88.00
6 93.16 92.97 92.52 92.01 88.00
7 93.16 92.97 92.54 92.01 88.00
8 93.17 92.98 92.54 92.01 88.02
9 93.18 92.98 92.60 92.03 88.02
10 93.18 92.98 92.61 92.03 88.02
11 93.18 92.98 92.61 92.03 88.03
12 93.19 92.98 92.61 92.03 88.04
13 93.19 92.98 92.61 92.03 88.04
14 93.19 92.98 92.61 92.04 88.04
15 93.19 92.98 92.61 92.04 88.04

Table 2: Optimizing C: results of the GA.

5.5 Optimizing C’s and � ’s

In the experiments described in this section not only
the class specific C-values were to be optimized but
also the � -values. Thus the � -values of the different
binary learners may differ from each other. Corre-
spondingly the chromosomes consist of integer arrays
of length 18: 12 positions for the C-values and 6 po-
sitions for the � -values of the binary classifiers. The
� -value is encoded such that the integer value in the
chromosome has to be multiplied with 0.05 to give the
final value. The possible range for � is [0.05 
�
�
 1.5].
Again, the GA was trained on the reduced training set
and tested on the evaluation set. As the chromosomes
are significantly longer than in the previous experi-
ments, more generations were necessary until the GA
converged. The results of the first 30 generations can
be seen in Fig. 3; the best score was 93.09. C and � -
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Figure 3: Optimizing C and � : Results of the GA.

values corresponding to an optimal chromosome are
presented in Table 4. With this parameter combina-
tion we obtained a score of 92.25 on the test set (see
Table 5).

5.6 Results

We trained the classifiers with the best results from
Sect. 5.3, Sect. 5.4 and Sect. 5.5 on the complete train-
ing set and tested these models on the test data. Ad-
ditionaly we tested the MBL on the same data. For
the MBL we used the decision tree variant (IGTree)
of Timbl (Daelemans et al. 01) with information gain
as feature weighting method and 1 as the number of
nearest neighbours. The results are reported in Table
5.

6 Comparison and Discussion

6.1 Comparison of Our Results

The classifier trained with the hyperparameters found
by the model selection tool, thus with the same C-
and � - values for both classes in all binary classi-
fiers, reached a surprisingly high score of 92.14. The

ALL LK VC C

model selection 92.14 94.40 90.82 88.71
optimizing C 92.25 94.62 90.72 89.10
opt. C and � 92.25 94.62 90.85 89.10
MBL 92.94 95.57 91.66 88.24
LibSVM default 77.74 78.85 76.66 77.35
baseline 75.4 81.1 62.4 81.9

Table 5: Results on the test set



I-LK/O I-LK/I-VC I-LK/I-C O/I-VC O/I-C I-VC/I-C

C 
 /C � 8/12 14/23 11/22 22/36 6/10 11/32
� 0.1 0.05 0.1 0.05 0.2 0.3

Table 4: Optimizing C and � : best C- and � -combination after 30 generations.

optimization with the GA in 5.4 could only outper-
form this score by 0.11. Optimizing both, C’s and � ’s,
for all binary classifiers could not further improve the
score. No doubt, optimization of the training error
penalty parameter and � is important (cf. the results
with LibSVM default values in Table 5). Yet, vary-
ing � for each binary classifier does not seem to be
advantageous.

None of the learners in our experiments were able
to outperform the MBL which scored 92.94 on the
test data. It seems that this classifier is slightly bet-
ter suited to learn topological fields with features as
chosen in our experiments.6

The best results in Sect. 5.4 were found with
� � ��
�������� , a small value for � which could imply
the danger of overfitting. The average � -value in the
best chromosome found in 5.5 is ca. 3 times bigger,
yet, this classifier did not score better on the test set.
Another interesting point is that the optimal C-values
found in 5.4 and 5.5 do not conform with the heuris-
tics proposed in (Chew et al. 00) nor with the number
of training points in the single target classes. Thus,
heuristics can hardly help to find the best parameter
values.

6.2 Comparison with Previous Work

Very recently, Xu and Chan have also performed SVM
optimization experiments using GA’s. In (Xu & Chan
03b), they used GA’s in order to optimize class spe-
cific C-values with a fixed � . In (Xu & Chan 03a),
they optimized � for fixed C-values. In these ex-
periments they could improve accuracy by 0.4% and
0.25%. However, they did not compare both ap-
proaches on the same data, nor did they include ex-
periments corresponding to ours in 5.3 and 5.5. This
may be the reason why their conclusion is slighty dif-
ferent from ours: they seem to propose that optimiz-
ing classifier specific � ’s and class specific C’s with
GA’s leads to considerably better results. On our data
though, the model selection tool with the same C- and
� -values for all binary classifiers got competitive re-

6The differences between the best scores of the SVM on the
validation st and the MBL in (Veenstra et al. 02) are much smaller
(0.11 and 0.21). Yet, it is difficult to compare these scores as the
same data was used as test data for the MBL but as validation set
for the SVM’s.

sults as well.

7 Future Work

It would be interesting to experiment with different
kinds of data representation or to focus on feature se-
lection, e.g. to use the previously predicted chunk in
the same sentence as an additional feature. Regarding
SVM’s a next step could be to use different Kernels.
Concerning the GA’s it would be interesting to use dif-
ferent GA implementations and search strategies. We
will concentrate on the first mentioned direction.
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