
Iterative Treebank Refinement
Tylman Ule and Jorn Veenstra

Seminar für Sprachwissenschaft, Universität Tübingen

In: Proceedings of the 14th Meeting of Computational
Linguistics in the Netherlands, Antwerp, Belgium, 2003.

Abstract

Treebanks are a valuable resource for the training of parsers that perform automatic anno-
tation of unseen data. It has been shown that changes in the representation of linguistic
annotation have an impact on the performance of a certain annotation task. We focus on the
task of Topological Field Parsing for German using Probabilistic Context-Free Grammars
in the present research. We investigate an iterative algorithm for tuning the label set of a
given treebank to this task and show that the number of parses proposed by a context-free
grammar is reduced considerably in addition to an increase in labelled precision and recall
for the annotation of node labels. We also show that the optimal refinement can be achieved
with a relatively small number of changes to the treebank.

1 Introduction

Treebanks have undisputed value for many purposes, one of them being to train
parsers. That being only one of all possible applications, the design of a treebank
has to fulfil other needs as well. The main purpose of a treebank is to reflect the
assumptions of their designers about what linguistic information is made explicit
by the annotation. However, an important design criterion is also that the under-
lying annotation scheme is stated clearly in guidelines and is easily accessible, so
that annotators can follow these guidelines to produce a corpus that is consistently
annotated with high accuracy. The choice of tools available also influences the
representation of linguistic annotation. It is unlikely that the design of a treebank
meets all these requirements equally well, e.g. that a corpus whose annotation
is optimised for representing linguistic information will be optimally tailored for
training parsers.

In this paper, we focus on the relation between a specific application and the
shape of linguistic annotation in a corpus. We annotate the complex structure of
topological fields in German using context-free grammars. Previous experiments
have shown that the label set does not optimally reflect distinctions between distri-
butions of productions, and that few modifications may have considerable impact
on parsing accuracy (Veenstra, Müller and Ule 2002). Our goal here is twofold.
First, we try to find the minimal set of distribution-driven treebank transforma-
tions that yield optimal parsing performance. Second, we examine whether the
transformations can be used as an efficient means to reduce the number of parses
generated by the context-free grammar.

1

2 Tylman Ule and Jorn Veenstra

2 Data and Methods

2.1 A Corpus of Topological Fields for German

The Topological Fields (TopF) Model for German offers an approach to handle
constituent order in German, which is relatively free (Höhle 1986). Complex Ger-
man sentences are analysed according to the model as a hierarchy of verbal and
non-verbal fields. The finite and non-finite parts of the verb make up the sen-
tence bracket (LK and VC in the subclause of figure 1). The TopF model groups
complements and adjuncts into the same clause and puts them into the front (VF),
middle (MF), or final field (NF). A sentence fully annotated with topological fields
limits the search space when determining e.g. grammatical relations between the
phrases and the verbal parts of a sentence. In figure 1, e.g., the verb in the matrix
clause may only have relations to either the sentential object (marked by the edge
label OS) or the pronoun sie (ON; nominative object). In the subordinate clause,
only strings or substrings of Ercettin and Pop mit Niveau may have a grammatical
function. Figure 1 shows all grammatical function edge labels in light grey, and
all TopF labels have heavy outlines. The TopF model seems to be descriptively
adequate (Eisenberg 1999) and it can also be implemented efficiently (Becker and
Frank 2002, Veenstra et al. 2002).

We base our experiments on a corpus which has been annotated with topo-
logical fields: The Tübinger Baumbank des Deutschen / Zeitung (TüBa-D/Z)
(Telljohann, Hinrichs and Kübler 2003).1 It consists of manually annotated texts
from the newspaper taz. In addition to topological fields, the annotation also in-
cludes constituent structure, where the maximal projections are marked with their
grammatical function in the clause. We use a tune and a final data set for our ex-
periments, which both are divided into test and training data as shown in table 1.2

Tune Sentences Words
Train 7624 122661
Test 3067 50327

Final Sentences Words
Train 10691 172988
Test 4009 65868

Table 1: Sizes of Tune and Final Data Sets

TüBa-D/Z uses the export data model to describe the annotation of sentences
(Brants 1997). In the export model, linguistic annotation is represented by di-
rected acyclic graphs with labelled nodes and edges.3 Annotation in TüBa-D/Z is
restricted to non-crossing edges, so that the annotation graphs form proper trees.
In the present context, we evaluate the adequacy of an annotation scheme for an-
notating topological fields using context-free grammars (CFGs). CFGs only dis-

1TüBa-D/Z is available at http://www.sfs.uni-tuebingen.de/de_tuebadz.shtml.
2The division of the data sets follows the division of TüBa-D/Z into days – May 7 is the tune test data,
and May 3–5 is tune train data. Final test data is May 6, and final train data is May 3–5 and 7.
3The export data model also allows arbitrary directed arcs between any two nodes in a tree. In TüBa-
D/Z, these secondary edges are used infrequently, and we ignore them here.

Iterative Treebank Refinement 3

Aber
KON

Ercettin
NE

will
VMFIN

Pop
NN

mit
APPR

Niveau
NN

machen
VVINF

,
$,

sagt
VVFIN

sie
PPER

.
$.

KOORD

HD

NX

HD

VXFIN

HD

NX

HD

NX

HD

VXINF

HD

VXFIN

HD

NX

VF

HD

LK

HD

PX VC

HD

LK MF

HD

NX

MF

SIMPX

VF

SIMPX

VROOT

“But Ercettin wants pop_music with class to_do, says she.”
Ercettin, however, wants to do classy pop music, she says.

Figure 1: Topological Fields in a Complex Sentence

tinguish between nodes and their daughters, i.e. edges are not labelled explicitly.
As a consequence, any edge labels to be considered in the context-free representa-
tion of TüBa-D/Z have to be added to the label of the daughter node from which
the labelled edge starts. Therefore we perform a number of initial transformations
which we describe next.

Heads in complex phrases are explicitly marked by the edge label HD in TüBa-
D/Z. When phrases or fields are coordinated, they receive the edge label KONJ.
Phrases that belong to an appositional structure receive the edge label APP. We
keep these labels, because they seem to be informative about TopF-structure (Ule
2003). When they occur above pre-terminals (i.e. POS tags), then a new node with
the label POS+EDGE is added above the POS tag, so that this information can be
added to given POS tags during parsing. In the above example, e.g., Ercettin/NE
will be dominated by an additional NE+HD. Phrases inside fields are annotated
with their grammatical functions in TüBa-D/Z (ON, OA and OS in figure 1). We
do not use any information related to grammatical functions (i.e. all light grey edge
labels in figure 1). Generally using edge labels means appending them to the node
labels they dominate, while ignoring them means using node labels as is.

4 Tylman Ule and Jorn Veenstra

Some terminal and non-terminal nodes are not attached to any parent node,
which in the export model corresponds to being attached to the special VROOT
node. VROOT is the unique topmost node in all sentences. In figure 1, e.g., three
nodes are not attached to a parent node: the SIMPX root node of the syntactic
annotation and the two punctuation marks (comma and full stop). A context-free
representation only has a single start symbol, so that the unattached terminals have
to be attached to that start symbol as well. We use VROOT as the CFG start
symbol and reattach all nodes (terminal or non-terminal) that are not explicitly
attached to a parent node to the lowest node that dominates both its right and
left sister. I.e. the comma is attached to the matrix clause (SIMPX) between VF
and LK. If there is only one sister (see the full stop in figure 1) then the node is
only dominated by VROOT, to which it is attached. There are also unattached
non-terminal nodes in TüBa-D/Z (mostly parentheses) which are transformed into
proper trees along the same lines.

Proper names are annotated in TüBa-D/Z by a single new node dominating the
lowest single node in the syntactic annotation tree that spans all terminals of the
proper name. If there is no node in the syntactic tree that dominates all and only the
nodes that belong to a single named entity, then the full extent of the named entity
is marked by secondary edges, which we ignore (for more details, see Telljohann
et al. 2003).

2.2 Parser and POS

We use the lopar parser for all our experiments, and unlexicalised rule fre-
quencies read directly off the treebank (Charniak 1996).4 We use automatically
part-of-speech (POS) tagged data for our experiments by training the tnt tag-
ger (Brants 2000) on manually annotated texts.5 We perform POS tagging as a
separate task prior to TopF-parsing, i.e. the input to all experiments consists of
sequences of automatically annotated POS tags. We use the STTS German tagset,
which is also used in TüBa-D/Z (Schiller, Teufel and Thielen 1995).

2.3 Treebank Refinement

Our goal is tuning a corpus to a task, an approach that we term Treebank Refine-
ment (TR). In the present context, the corpus is TüBa-D/Z, and the task is TopF-
parsing using PCFGs. An inherent property of CFGs is context-freeness, which
means that the only way to pass information about daughters to grandparents is the
parent node. Figure 2 schematically shows a node label XP that has a number of
different productions (i.e. sequences of daughter nodes) {a, . . . , h, . . . } in the tree-
bank. These productions have a certain distribution of occurrences, e.g. over the
whole corpus b and c may be more frequent than g and h, which is schematically
4lopar is available at http://www.ims.uni-stuttgart.de/projekte/gramotron/
SOFTWARE/LoPar-en.html (Schmid 2000).
5We annotate the treebank by splitting the data into ten parts, annotating each part with a model trained
on the remaining nine parts. Accuracy was best when supplementing this training data with more data
from the taz newspaper and other sources (Ule and Müller 2004).

Iterative Treebank Refinement 5

shown by the shape of the curve above a . . . h on the left-hand side of the figure.
In a PCFG, every time the node label XP is expanded, this will be the underlying
distribution. There may be a wider context Y in which XP occurs, however, that
limits the set of productions so that the distribution of these productions shows a
different shape (right half of figure 2).

Figure 2: Node Label XP is misleading in Context-Free Grammar

TR aims at spotting productions of nonterminal nodes in treebanks that do
not behave as expected when they appear in certain contexts. TR looks at all
types of nonterminal nodes f in a treebank (which we call the focus nodes) and
compares the distribution of each of f ’s productions over the whole treebank with
its productions when appearing under a certain parent node (the context type c of
focus type f). TR is applied iteratively, and in each iteration it delivers a single f

that has the most unexpected distribution of productions in a certain context c.
We compare the distributions of the production types p of node f , where pro-

duction means sequence of direct children. In order to compare these distributions,
we employ the Skew Divergence (Lee 2001), which is a smoothed version of the
information-based Kulback-Leibler divergence.6

We first introduce some notation:

f ∈ F is a focus type, where F is the set of different nonterminal node types in
the treebank

c ∈ Cf is a context type of focus f , where Cf is the set of different context types
of focus f ; we consider parent nodes (including VROOT) as context so that
c dominates f (in short: c > f)

p ∈ Pf is a production type of focus f , where Pf is the set of different types of
productions of focus f , and a production is the sequence of direct children
(in short: f → p)

prob(c > f → p) is the probability that f has production p in context c, estimated
via maximum likelihood

6Using Skew Divergence instead of the unsmoothed Kullback-Leibler Divergence would strictly be
necessary only when comparing two distributions in context for merging previously split nodes, where
the support of one distribution is not always a proper subset of the support of the other distribution. We
nonetheless always employ Skew Divergence in order to keep all results comparable.

6 Tylman Ule and Jorn Veenstra

prob(f → p) is the probability that f has production p, estimated via maximum
likelihood

α is a smoothing factor

We can now describe the divergence SDfc
α between the distribution of produc-

tions p of node type f over the whole corpus and the distribution of its productions
when f occurs in a certain context type c as:

SDfc
α =

∑

p∈Pf

prob(c > f → p) log
prob(c > f → p)

αprob(f → p) + (1− α) prob(c > f → p)

TR is an iterative process that determines one focus node in context that
shows the most deviant distribution per iteration and assigns all occurrences of
this focus node a new name, effectively splitting it. A first goal could be to find
argmax

fc

SDfc
α in each iteration.7 In contrast to Bockhorst and Craven (2001),

who have introduced the idea to detect overloaded node labels by comparing the
distribution of productions in certain contexts in a PCFG parsing task that relies on
unsupervised training, we have an annotated treebank at hand. We assume that the
order in which focus nodes are split should not only be influenced by the difference
in distributions described by SDfc

α , but also by the number of times a focus node
occurs in a corpus, because nodes appearing more frequently will have bigger im-
pact on performance than those occurring less often. We therefore weigh SDfc

α by
obsfreq(c > f), i.e. by the number of times f is observed in context c. We also
use a threshold of obsfreq(c > f) > 10 and choose to emphasise the impact of
large Skew Divergence by using a factor of 2SDfc

α . For each iteration, we select f̂

and ĉ according to

argmax
fc

(obsfreq(c > f)− 10)(2SDfc
α − 1)

The resulting weight ŵ denotes the maximum frequency-weighted divergence
for the current iteration, which is observed for focus node type f̂ in context type
ĉ.8 At the end of each iteration, all f̂ in context ĉ receive the same new label
type. Remapping the new labels to the previous labels makes parses of the refined
treebank directly comparable to original parses. Pseudo-code for TR is given in
algorithm 1.

3 Experiments and Results

It has been shown that TR is capable of tuning a treebank for PCFG parsing when
evaluated by labelled precision and recall (Ule 2003). We try to address two new
7This amounts to the selection metric used in Ule (2003).
8Subtracting 10 from obsfreq(c > f) and 1 from 2SDfc

α does not change the order of all ŵ, but it
allows for skipping easily all ŵ ≤ 0 which mark infrequent or non-deviant distributions.

Iterative Treebank Refinement 7

Algorithm 1 Treebank Refinement
1: repeat
2: ŵ ← 0
3: for all f ∈ F do
4: for all c ∈ Cf do
5: d← SDfc

α

6: w ← (obsfreq(c > f)− 10)(2d − 1)
7: if w > ŵ then
8: (ŵ, f̂ , ĉ)← (w, f, c)
9: end if

10: end for
11: end for
12: if ŵ ≥ threshold then
13: RENAMEFOCUSINCONTEXT(f̂ , ĉ)
14: end if
15: until ŵ < threshold

questions. First, which impact does each iteration of TR have on parsing accuracy,
and second, does adding context into node labels mean that the ambiguity of a
context-free treebank grammar is reduced?

Following Ule (2003), we define TopF-parsing as the task of assigning the set
of labelled nodes given in table 2 to a string of POS. POS tagging is performed
automatically prior to parsing at an accuracy of 96.36%. For all experiments, we
set α = 0.99, because results reported in Lee (2001) suggest that a high value of
α performs well across a range of experimental settings.

We apply increasing numbers of iterations of TR to the training data, extract
a treebank grammar from the training data, and use this grammar and lopar to
parse the test set. The node labels of the test set are remapped to the original
node labels for evaluation. First, we analyse performance for every single iteration
stopping when ŵ < 150. We choose this threshold because it results in more
than 100 iterations, and preliminary experiments have shown major changes in the
accuracy before iteration 50. We also perform two more experiments for ŵ ≥ 10
and ŵ ≥ 0.01, but for the last two experiments we only train the PCFG once on
the train set which has been transformed by the corresponding maximum iterations
of TR. We restrict all our experiments to sentences with up to 40 words.

3.1 Iterations of TR

The graphs in figure 3 show Fβ=1 after each iteration of TR for each node type
in the set of TopF nodes except for PARORD, P-SIMPX and VCE, which never
score above zero. The performance graphs can be roughly subdivided into three
groups, according to the shapes of the curves. First, there are node label types
that show a sharp increase in Fβ=1 during TR. This group is shown separately in
the upper graph. The upper half of the lower graph shows the label types with

8 Tylman Ule and Jorn Veenstra

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100

F β
=1

Iterations

C
SIMPX

MF
R-SIMPX

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100

F β
=1

Iterations

LK
VC
VF

KOORD
NF

FKONJ
FKOORD

LV

Figure 3: Fβ=1 for TopF Node Labels by Iterations of Treebank Refinement

Iterative Treebank Refinement 9

relatively constant performance (though never worse than baseline performance).
There are also some node label types in the lower half of the lower graph that
do not perform well. Table 2 shows that the four worst performing label types
are also least frequent in the corpus, indicating that more data would be helpful
here.9 The two remaining types of nodes that perform far below average (FKONJ
and FKOORD) are involved in coordinations, representing rather hard problems.
Many of the curves increase over many iterations of TR (e.g. R-SIMPX from it. 1
to 18), which indicates that a number of transformations work together to improve
labelled precision and recall.

Label Gold Max. It.
all 21071 18524 74
MF 4486 3834 74

SIMPX 4330 3811 33
LK 3291 3181 8
VF 3065 2814 95
VC 2727 2555 8
NF 997 752 92
C 992 896 105

Label Gold Max. It.
FKONJ 398 240 32

R-SIMPX 353 257 102
FKOORD 207 95 8
KOORD 168 153 37
PARORD 24 0 0

LV 20 8 50
P-SIMPX 13 0 0

VCE 0 0 0

Table 2: Correct Labelled Nodes in Gold Data for Optimal Tune-Test Iteration

There are noticeable improvements in figure 3 where certain node labels profit
from a single iteration. Table 3 shows some of these iterations, and the biggest
single contributor to SDfc

α (column unexp. p).10

It. Fβ=1 increases for c > f unexp. p exp obs

1 C, R-SIMPX C > NX PRELS+HD 19.05 575
8 NF, FKONJ, FKOORD NF > SIMPX C MF VC 184.14 697
9 SIMPX, R-SIMPX R-SIMPX > C NX#1 253.18 625

18 R-SIMPX SIMPX#8 > VC VXINF+HD 154.55 415
26 LV LV > SIMPX C MF VC 0.79 21

Table 3: Iterations with Large ∆Fβ=1 for certain Node Labels

Figure 4 relates overall Fβ=1 and ŵ. Optimal performance on the tune data set
is achieved after iteration 74, which corresponds to ŵ ≥ 260.02. We accordingly
use this ŵ as the stopping condition on the final data set, where ŵ falls below
this threshold after iteration 100. Overall Fβ=1 converges rather soon to almost
optimal performance and stays at a high level over many iterations.
9The Max. column corresponds to the best performance according to Fβ=1.

10The exp column shows expfreq(c > f) = obsfreq(f → p)
obsfreq(c>f)

obsfreq(f)
, i.e. the expected

number of times a production of a focus node appears in this context. The obs column shows
obsfreq(c > f). Nodes with trailing #n have been renamed in iteration n.

10 Tylman Ule and Jorn Veenstra

 82

 83

 84

 85

 86

 87

 88

 0 20 40 60 80 100
 100

 1000

 10000

 100000

F β
=1

M
ax

im
um

 W
ei

gh
t

Iterations

all
ŵik

Figure 4: Overall TopF Fβ=1 and Maximum Weight ŵ by Iteration

3.2 Distribution of the Number of Parses

In a second evaluation, we take the decrease in the number of analyses for a sen-
tence to measure the quality of the TR transformations, because we assume that it
is related to the CFG’s ambiguity. Figure 5 shows the distributions of the numbers
of parses for different numbers of iterations of TR on the tune test data as box-
and-whiskers plots. It includes every 10th iteration up to the stopping condition of
ŵ ≥ 150 (left-hand side). It also shows iteration 74, which performs best on the
tune data set, and the distributions of the final iterations for ŵ ≥ 150, ŵ ≥ 10 and
ŵ ≥ 0.01. Performance of parent encoding according to Johnson (1998) is also
given (JP).11

We summarise the previous figures in tables 4 and 5 for characteristic numbers
of TR iterations for both the tune and full data sets. We include grammar sizes
(# Rules) and coverage (in terms of the number of unparsed sentences; column
Unparsed) for these trials. The maximum number of analyses row (Max.) shows
outliers, which can also be seen in figure 5, where the whiskers are very short in
upward direction because they are shown against a logarithmic scale. Everything
above the whiskers denotes outliers of the distribution of numbers of analyses per
parse in the test set. Their high number can be explained by the relation between
sentence length and number of analyses, which is exponential for CFGs. We also
show the median of the distribution of numbers of parses in the test set (Med.), the

11The JP transform adds the parent node label to each child over all nodes of the treebank.

Iterative Treebank Refinement 11

10 20 30 40 50 60 70 80 90 100

Increasing Iterations of TR

N
um

be
r o

f P
ar

se
s

1e
+0

0
1e

+2
0

1e
+4

0
1e

+6
0

1e
+8

0
1e

+1
00

0 74 683 1652 JP

Selected Iterations of TR and Parent Transform

Figure 5: Numbers of Parses by Iterations of Treebank Refinement on Tune Data Set

iteration after which the trial ends (Iteration), and the labelled Fβ=1 on the test set
(lab. Fβ=1). The w-best column of table 5 shows the result when ŵ determined on
the tune set is used as stopping condition on the final set. The last columns show
results for the parent transform (JP).

Trial base best 150 10 0.01 JP
Iteration 0 74 105 683 1652 n/a
lab. Fβ=1 82.6 87.8 87.7 84.5 82.8 87.5

Med. log10 35.53 24.41 23.81 13.22 8.23 16.56
Max. log10 106.79 75.14 73.25 40.56 24.47 51.80

Unparsed 37 39 40 47 61 44
Rules 3943 6438 7221 13316 16678 7403

Table 4: Evaluation on Tune Data Set

The median of the distributions seems to decrease monotonically over increas-
ing numbers of iterations of TR. The experiments for much higher numbers of
iterations support this observation, yielding a median of less than 1010 parses
compared to more than 1030 parses of the baseline model. The highest number
of parses drops accordingly. The JP transform also shows a noticeable drop in
median and maximum number of parses. Higher numbers of iterations tend to

12 Tylman Ule and Jorn Veenstra

Trial base w-best 150 10 0.01 JP
Iteration 0 100 136 895 2101 n/a
lab. Fβ=1 80.5 89.2 89.2 86.7 85.6 88.8

Med. log10 33.96 26.76 26.64 13.45 9.92 18.92
Max. log10 109.47 87.15 84.95 41.49 29.50 62.11

Unparsed 84 86 86 90 103 90
Rules 4814 8400 9259 17378 21624 9040

Table 5: Evaluation on Full Data Set

reduce the number of analyses for all sentences, where for the first few iterations
including the best performing iteration, a major reduction can already be observed.
Stopping at w-test seems to be a viable approach, because it achieves the highest
performance at a smaller number of iterations than ŵ ≥ 150. Performance of all
transformations is better than the baseline models. The number of unparsed sen-
tences on the final data set is much higher than expected from the difference in size
between the tune test and final test sets, suggesting differences in quality between
the data sets. The poor performance of the final base model may have to do with
the high number of rules.

The experiments suggest that it is useful to investigate the iterative behaviour
of TR because it seems to be capable of increasing labelled precision and recall on
the set of annotated node labels quickly after few iterations, and also to reduce con-
siderably the number of parses proposed by a CFG read off the resulting treebank.
For all TR experiments we perform, Fβ=1 turns out to be superior to that of the
baseline model, and for the highest number of iterations we perform, the median
of the distribution of the numbers of parses for the tune set is reduced from 1035

to 108, and quite similarly from 1034 to 1010 for the full data set. Performance of
the JP transform is slightly worse than for the optimal iteration of TR with respect
to Fβ=1, coverage, and grammar size. However, the number of parses is lower for
TR only after a high number of iterations.

3.3 Related Research

Johnson (1998) shows that simple transformations in a treebank can considerably
improve parsing accuracy of CFGs. He adds context to all nodes by adding parent
labels to node labels everywhere and at once. In TR, this would be an uncondi-
tional split of all nodes in a single iteration. The simple parent encoding performs
surprisingly well in comparison to TR. We expect the difference to widen, how-
ever, when extending the notion of context beyond parent nodes to, e.g., parents
and grandparents.

Klein and Manning (2003) push unlexicalised PCFG performance beyond early
lexicalised PCFGs by selectively relabelling nodes. They include internal (head
word) and external (ancestor) context into node labels, stressing the importance

Iterative Treebank Refinement 13

of passing information across several levels of CFG productions. They do not
only split non-terminal node labels, but also pre-terminals (i.e. POS tags), and
closed lexical classes. Their changes are linguistically motivated, and applied by
manual hill-climb. While TR as reported here cannot detect all of the deviations in
distributions that Klein and Manning exploit, we believe that all distinctions can
be incorporated by extending the notion of context, focus node and productions
straightforwardly.

Belz (2002) presents a merge operator and applies beam search to derive an
optimal partitioning of an initial grammar according to an objective function. The
partitioning is shown to include useful parent information into node labels. In
the experiment reported, partitioning can produce the same grammar as Treebank
Refinement as long as the context triggering a split in TR is not the result of a
previous iteration. Partition search can model the interactions between iterations
of TR by extending the initial grammar accordingly, which becomes more costly
when more context is considered in TR.

While all the above experiments have been performed on English data from the
Penn Treebank, Becker and Frank (2002) use PCFGs to annotate topological fields
in German. They use the negra corpus (Skut, Krenn, Brants and Uszkoreit 1997)
as training material. TopF structure is not natively encoded in their corpus, so that
an automatic conversion to TopFs is first applied to it, which yields 93.0%/93.7%
labelled precision/recall. This data is used to generate a treebank grammar for
training a PCFG and for testing the resulting grammar. They vary the information
retained in the node labels, the handling of punctuation, and binarisation and prun-
ing of the grammar, all of which they apply deterministically. While text type and
label set of Becker and Frank (2002) are similar to what is used in the present ex-
periments, TüBa-D/Z has been annotated manually. The data of Becker and Frank
(2002) is produced automatically with an accuracy resembling the performance
of their annotation method, which makes it difficult to compare with results ob-
tained on manually annotated data (they obtain a maximum 93.4%/92.9% labelled
precision/recall using gold POS by applying all proposed transformations).

3.4 Future Research

We have seen that TR reduces the number of parses that a naive CFG assigns to a
POS sequence. Additionally, the labelled bracketings of nodes seem to be recov-
erable from transformed data at least as easily as they are from untransformed data
using a plain PCFG. TR with an extended notion of context may be able to recover
larger fragments of relevant data given the same amount of data. We expect that
extended context will also allow to apply TR to improve more detailed annotation
of treebanks, including full phrasal annotation, and grammatical functions. We
also expect that the difference in performance relative to the JP transform will be
more noticeable.

We therefore reckon that it may well be possible to include enough relevant
context into node labels of a treebank, so that an otherwise context-free method
will be able to enumerate a reduced set of parses that is small enough to serve as

14 Tylman Ule and Jorn Veenstra

input to much more powerful disambiguation methods (as proposed by e.g. Collins
and Duffy 2002). In order to see whether the reduced set of parses is useful as
preprocessing, it will be necessary to show that the gold parses are still in the
reduced set of parses resulting from TR, which we plan to investigate further.

With increasing numbers of iterations, the sparse data problem becomes more
pressing because the number of node labels, and therefore the number of rules
in the grammar increases. We expect that more data will help us overcome this
problem, but rather than proposing to annotate more data we think that in this
context punctuation plays an important role. Punctuation marks are currently used
as encoded in TüBa-D/Z, where no information is given as to where a certain
punctuation mark belongs. Preliminary experiments with simple heuristics that
attach e.g. commas to a following relative clause have shown a positive impact on
performance. We expect that handling punctuation will reduce the number of rules,
because punctuation can be attached much lower in the tree, making the resulting
rules more regular.

We expect that refinement exclusively relying on splitting node labels will un-
necessarily intensify sparse data problems. We therefore plan to develop a merge
operator that does not further subdivide distributions as does the merge operator
presented in Ule (2003). Merging there looks for any two node labels in any two
contexts that have the same set of productions and assigns these two node labels
the same new name. We expect that an improved merge operator will be advan-
tageous, so that distributions of productions in different areas of the sentence that
have been split independently will be merged again when equal, so that again, the
number of examples per class increases.

4 Conclusion

We have shown that treebank transformations that aim at encoding differences in
expansion distributions depending on a wider context in the node labels have desir-
able effects on treebank grammars. They can improve parsing accuracy of a PCFG
on the one hand, and reduce the number of analyses proposed by the underlying
CFG on the other. While accuracy and ambiguity are not independent, a reduc-
tion in ambiguity by 1020 can be achieved without harming accuracy. Comparison
with related research suggests that it will be useful to extend TR to consider wider
context for inclusion into node labels.

Acknowledgements

This research was supported by the German Research Council (DFG) as part of the
research program Sonderforschungsbereich 441: Linguistische Datenstrukturen.
We would like to thank the anonymous reviewers for their helpful comments.

References

Becker, M. and Frank, A.(2002), A stochastic topological parser for German, Pro-
ceedings of COLING-2002.

Iterative Treebank Refinement 15

Belz, A.(2002), PCFG learning by nonterminal partition search, Proceedings of
ICGI-2002, Springer, Berlin, pp. 14–27.

Bockhorst, J. and Craven, M.(2001), Refining the structure of a stochastic context-
free grammar, Proceedings of IJCAI-2001.

Brants, T.(1997), The NeGra export format for annotated corpora, Technical re-
port, Universität des Saarlandes. Computerlinguistik.

Brants, T.(2000), TnT – a statistical part-of-speech tagger, Proceedings of ANLP-
2000, Seattle, WA.

Charniak, E.(1996), Tree-bank grammars, Technical Report CS-96-02, Brown
University, Department of Computer Science.

Collins, M. and Duffy, N.(2002), Convolution kernels for natural language, in T. G.
Dietterich, S. Becker and Z. Ghahramani (eds), Advances in Neural Infor-
mation Processing Systems 14, MIT Press, Cambridge, MA.

Eisenberg, P.(1999), Grundriß der deutschen Grammatik, Vol. 2: Der Satz, Met-
zler, Stuttgart.

Höhle, T.(1986), Der Begriff ‘Mittelfeld’, Anmerkungen über die Theorie der
topologischen Felder, Akten des Siebten Internationalen Germanistenkon-
gresses 1985, Göttingen, pp. 329–340.

Johnson, M.(1998), PCFG models of linguistic tree representations, Computa-
tional Linguistics 24(4), 613–632.

Klein, D. and Manning, C.(2003), Accurate unlexicalized parsing, Proceedings of
ACL-2003, Sapporo, Japan, pp. 423–430.

Lee, L.(2001), On the effectiveness of the skew divergence for statistical language
analysis, Proceedings of Artificial Intelligence and Statistics 2001, pp. 65–
72.

Schiller, A., Teufel, S. and Thielen, C.(1995), Guidelines für das Taggen deutscher
Textcorpora mit STTS, Draft, IMS, Universität Stuttgart, and SfS, Univer-
sität Tübingen.

Schmid, H.(2000), Lopar: Design and implementation, Technical report, IMS,
Universität Stuttgart. Arbeitspapiere des Sonderforschungsbereichs 340.

Skut, W., Krenn, B., Brants, T. and Uszkoreit, H.(1997), An annotation scheme for
free word order languages, Proceedings of ANLP-97, Washington, DC.

Telljohann, H., Hinrichs, E. W. and Kübler, S.(2003), Stylebook for the German
Treebank of Written German (TüBa-D/Z), Seminar für Sprachwissenschaft,
Universität Tübingen, Tübingen.

Ule, T.(2003), Directed Treebank Refinement for PCFG parsing, Proceedings of
The Second Workshop on Treebanks and Linguistic Theories (TLT-2003),
Vaxjö.

Ule, T. and Müller, F. H.(2004), KaRoPars: Ein System zur linguistischen Annota-
tion großer Text-Korpora des Deutschen, in A. Mehler and H. Lobin (eds),
Automatische Textanalyse. Systeme und Methoden zur Annotation und
Analyse natürlichsprachlicher Texte, VS Verlag für Sozialwissenschaften,
Opladen, pp. 185–202.

Veenstra, J., Müller, F. H. and Ule, T.(2002), Topological Fields Chunking for
German, Proceedings of CoNLL-2002.

