Automated collection and analysis of phonological data

James Myers National Chung Cheng University Lngmyers@ccu.edu.tw

International Conference on Linguistic Evidence 2008 Tübingen, Germany Jan 31 - Feb 2

Acknowledgments

- Research assistants Tsung-Ying Chen, Chen-Tsung Yang, Yu-Guang Ko
- Suggestions from James S. Adelman, Harald Baayen, Wayne Cowart, John C. Pezzullo
- Grants: National Science Council (Taiwan) grants NSC 94-2411-H-194-018, NSC 95-2411-H-194-005, NSC 96-2411-H-194-002
- MiniJudgeJS, MiniJudgeJava, MiniCorpJS are co-copyrighted by National Chung Cheng University

Overview

- · Automating traditional linguistic methods
- An application to Mandarin phonotactics
- · How the tools work
- Plans for the future

Reform, not revolution

- Traditional linguistic methods have limits
 - Phonological patterns in lexicons need not be synchronically active (Ohala, 1986)
 - Informal acceptability judgments may be unreliable (Schütze, 1996; Cowart, 1997)
 - Without quantification, inferences are weak
 - Differences in methodological traditions hinder interdisciplinary collaboration
- Yet traditional methods should be built on; they don't need to be fully replaced

In praise of tradition

- Two major methods in testing grammars
 - Corpus analysis (particularly in phonology)
 - Psycholinguistic experimentation (judgments)
- These methods deserve respect
 - Similar to common psycholinguistic methods
 - Data are often stable and replicable
 - Implicitly quantitative (as we'll see)
 - Appropriate for testing long-term knowledge
- Easier than "full-fledged" psycholinguistics

Making reform easy

- Education
 - This conference, Cowart (1997), etc
 - www.ccunix.ccu.edu.tw/~Ingproc/IWGE.htm
- Automation
 - Experiments (e.g., WebExp: <u>www.webexp.info</u>)
 - Corpus data (e.g., Praat: www.fon.hum.uva.nl/praat)
- Software tools that implement and extend traditional methods

MiniCorp and MiniJudge

- www.ccunix.ccu.edu.tw/~Ingproc/MiniGram.htm
- MiniCorp
 - Software for creating, exploring, and analyzing (lexical phonological) corpora
- MiniJudge

 Software for designing, running, and analyzing linguistic judgment experiments
- Free, open-source, and cross-platform
 JavaScript (or Java) & R (www.R-project.org)
- Example:

 Mandarin phonotactics

 Mandarin disallows syllables with identical first and last vowels (e.g., Duanmu, 2007)

 (1) uai⁴ "outside" uei⁴ "for"

 iau⁴ "want" iou⁴ "again"

 (2) *uau *uou *iei *iai

 But some speakers have exceptions

 (3) iai² "cliff" (第) (also (王、明、如))

An analysis

- Identical vowels are blocked by the Obligatory Contour Principle (OCP)
- Why are the exceptions permitted? – Performance: Lexicons reflect not just
- grammar, but also processing and accidentsOr competence...? (e.g., Pater, to appear)
 - Exception-specific Optimality-Theoretic (OT) faith constraints (cf. exception diacritics)

9

Faith_{Exceptions} >> OCP

Empirical challenges

- Quantitative questions about corpus data
 - Do the exceptions undermine the OCP?
 - Yet are the exceptions too rare to support the exception-specific constraint?
 - Even if both constraints are reliable, is their claimed ranking supported by the data?
- Corpus data as *evidence for* a proposed grammar, not *learning of* a grammar
 - Cf. Tesar & Smolensky (1998), Boersma & Hayes (2001), Hayes & Wilson (to appear)

10

Tagging the corpus Items are represented in terms of constraint violations (cf. Golston, 1996) ORIGINAL ORDER [Constraints: Faith IP. iai2 * 1823 iai2 1824 iai2 scrolling 1825 iai2 and sorting a1 a1 UNDO regular expression matching a4 (i.*i)|(u.*u) ai1 ail ail (i.*i)|(u.*u) MATCH MATCH 12 APPROVE TAGS

Testing constraint rankings

- Compare regression equations that do vs. do not assume identical weights
 - (1) Different: Counts ~ w_1 Faith_{Ex} + w_2 OCP (2) Identical: Counts ~ w(Faith_{Ex} + OCP) [Algebra shows that (1) is an additive extension of (2), permitting a likelihood ratio test]
- This logic generalizes to the strict OT ranking of any number of constraints
 A>>B>>C ⇒ A>>{B, C} (no "ganging up")

15

Theoretical implications

- OCP is reliable in the Mandarin lexicon
- No reason to reject the performancebased interpretation of its exceptions
- Exception constraints are possible...
 7 or more exceptions would be enough to make the ranking statistically reliable
- But is this lexical pattern still active synchronically?

- What do native speaker judgments show ...?

MiniJudgeJS • Design experiment Choose experimental factors Choose set of prototype items Choose total number of item sets Segment prototype set (optional) Choose replacement segments for additional item sets (optional) · Approve and save master list of test items Run experiment Choose number of speakers Write instructions for speakers Save schematic survey information · Copy survey forms to print or email Analyze experiment Download and install R (if you haven't already) Enter raw results Generate data file
 Add neighborhood densities (optional, for judgments of word-sized items) Save data file Generate R code Paste R command code into R
 R will summarize your findings in an easy-to-read format 17

Surveys						
 Items (here, 16) put into random order 	最後謝謝你的幫忙與合作! ##01					
 Surveys (here, 20) emailed or printed (here, printed) 	1 (2) 分太 、 tuei ² 0 (3) 子 火 、 nuau ² 1 (4) (4) (1) 、 piou ²					
 Responses are quick yes/no judgments 	1 (6) ケー幺, piau ² 0 × (7) みく、, nue ² 1 × (8) ケーチ, tia ²					
 Guessing allowed, but must judge all items, in order 	1 (9) ガービン tiau ² 1* (10) カーヘ, tiei ² 1 (11) 分メ所, tuai ² 0 (12) 分メス, tuou ²					
 Binary judgments can detect gradience (Cowart, 1997) 	1 (13) クーヘ, piei ² 1 (14) ろメ历, nuai ² 0 (15) ろメス, nuou ² 1 (16) カース, tiou ²					

How MiniJudge works

- Generalized linear mixed effect modeling (GLMM) (Agresti, 2002; Baayen, to appear)
 - GLMM is like logistic regression, familiar from VARBRUL (Paolillo, 2002) **PLUS:**
 - Random variables (e.g., speakers & items) are included inside the same model
- MiniJudge includes item order as covariate
 - May reduce order-related nuisance effects
 Option to factor out interactions with order
 - (change in judgment contrasts over time)

21

A stricter analysis

- Judgments of nonlexical items are affected by analogy with "neighboring" lexical items (e.g., Bailey & Hahn, 2001)
- MiniCorp can count neighbors – Items differing in one segment (Luce, 1986)
- MiniJudge then provides the option to add neighborhood density as a covariate
- This factors out the effects of superficial analogy on acceptability judgments

Effect of neighbors							
Original a	nalysis						
•	Estimate	Std. Error	z value	Pr(> z)			
(Intercept)	-1.35027	0.47769	-2.827	0.00470	×		
Factor1	-0.36054	0.14289	-2.523	0.01163	×		
Factor2	-0.12541	0.14170	-0.885	0.37614			
Order	0.03018	0.03080	0.980	0.32723			
Factor1:Factor2	-0.46917	0.14360	-3.267	0.00109	××		
• Analysis in (Intercept) Factor1 Factor2	ncluding Estimate -1.962791 -0.199942 -0.317748	neighbor Std. Error 0.573706 0.163569 0.170356	hood c z value -3.421 -1.222 -1.865	ensity Pr(> z) 0.000623 0.221568 0.062153	××)		
Order	0.039577	0.031496	1.257	0.208906			
NeighDens	0.012984	0.006371	2.038	0.041561	×		
Factor1:Factor2	-0.111937	0.225783	-0.496	0.620056			
					23		

24

22

Other applications of the tools

- Quickly resolving judgment ambiguities in morphology & syntax (e.g., Myers 2007)
- Studying the interaction between grammar and processing (e.g., Ko, 2007)
- Quick piloting for large-scale experiments (e.g., Lawrence, 2007)
- Surveying an entire linguistic system
 - Quick, small-scale studies of each pattern
 - Studies can be run in parallel by assistants without much prior training

Plans for the near future

- New options
 - Rule ordering tests (cf. Sankoff & Rousseau, 1989)
 - Corpus exploration (cf. Uffmann, 2006)
 - Non-binary judgments (cf. Featherston, 2005)
 - Tools to help generate nonword items
- Improved statistics
 - Built-in analyses (though keep R code writer)
 - Exact statistics to avoid kluges (Myers et al., 2007)
- Improved interface
 - All Java, native language help, etc

Conclusions

- Traditional methods are a good start
- To build on them, linguists need help
- · Automation is one way to do this
- MiniCorp & MiniJudge are already usable
- They have helped test theoretically interesting claims of various sorts
- · Yet they are in need of improvement
- Collaborators and competitors are both most welcome!

Automated collection and analysis of phonological data

James Myers

National Chung Cheng University Lngmyers@ccu.edu.tw

International Conference on Linguistic Evidence 2008 Tübingen, Germany Jan 31 - Feb 2

28

26

References (1/4)

Agresti, A. (2002). Categorical data analysis, 2nd ed. Wiley. Baayen, R. H. (To appear). Analyzing linguistic data: A practical introduction to statistics. Cambridge University Press.

- Bailey, T. M., & Hahn, U. (2001). Determinants of wordlikeness: Phonotactics or lexical neighborhoods? *JML*, 44, 569-591.
- Boersma, P., & Hayes, B. (2001). Empirical tests of the Gradual Learning Algorithm. *Linguistic Inquiry*, *32*, 45-86.
- Cowart, W. (1997). *Experimental syntax: Applying objective methods to sentence judgments.* London: Sage Publications.
- Duanmu, S. (2007). *The phonology of Standard Chinese*, 2nd ed. Oxford University Press.
- Featherston, S. (2005). Magnitude estimation and what it can do for your syntax: Some wh-constraints in German. *Lingua*, 115 (11),1525-1550.

29

References (2/4)

- Frisch, S. A., & Zawaydeh, B. A. (2001). The psychological reality of OCP-Place in Arabic. *Language*, 77 (1), 91-106.
- Golston, C. (1996). Direct Optimality Theory: Representation as pure markedness. Language 72 (4), 713-748.
- Hayes, B., & Wilson, C. (To appear). A maximum entropy model of phonotactics and phonotactic learning. *Linguistic Inquiry*.
- Ko, Yu-Guang. (2007). Grammaticality and parsibility in Mandarin syntactic judgment experiments. National Chung Cheng University MA thesis.
- Lawrence, D. (2007, April). Using MiniJudge to test sentence acceptability. Talk presented at Thinking Matters Conference, University of Southern Maine.
- Luce, P. A. (1986). *Neighborhoods of words in the mental lexicon*. Doctoral dissertation, Indian University, Bloomington, IN.

30

References (3/4)

- Myers, J. (2007). MiniJudge: Software for small-scale experimental syntax. International Journal of Computational Linguistics and Chinese Language Processing, 12 (2), 175-194.
- Myers, J. (2008, July). From problem set to corpus analysis: MiniCorp and the Mandarin syllabary. Talk to be presented at the 18th International Congress of Linguists, Seoul, Korea.
- Myers, J., Huang, S.-F., & Tsay, J. (2007). Exact conditional inference for two-way randomized Bernoulli experiments. *Journal of Statistical Software*, 21, Code Snippet 1, 2007-09-02.
- Ohala, J. J. (1986). Consumer's guide to evidence in phonology. *Phonology Yearbook*, *3*, 3-26.
- Paolillo, J. C. (2002). Analyzing linguistic variation: Statistical models and methods. Stanford, CA: CSLI Publications.

31

References (4/4)

- Pater, J. (to appear). The locus of exceptionality: Morpheme-specific phonology as constraint indexation. In S. Parker (Ed.), *Phonological argumentation*. Equinox.
- Sankoff, D., & Rousseau, P. (1989). Statistical evidence for rule ordering. *Language Variation and Change*, *1*, 1-18.
- Schütze, C. T. (1996). The empirical base of linguistics: Grammaticality judgments and linguistic methodology. University of Chicago Press.
- Tesar, B., & Smolensky, P. (1998). The learnability of Optimality Theory. Linguistic Inquiry, 29, 229-268.
- Uffmann, C. (2006). Epenthetic vowel quality in loanwords: Empirical and formal issues. *Lingua*, *116*, 1079-1111.

32