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Colour Vision

I Our neuralnet example will be on colour vision

I Since we want to use neural networks as psychological models,
first some repetition on colour vision
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Light

I The eyes’ receptor cells react towards light
produced by or reflected from objects

I Light is (in part) an electromagnetic wave

I Visible spectrum: For humans ∼ 360− 750 nm
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The eye

I Two types of photoreceptor cells

- rods
- cones

I Only cones enable the differentiation of chromatic light (=
colour vision)
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The eye

I Cones contain one of three different photopigments

I These react with different intensity towards light of different
wavelengths
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Colour vision

I Humans can differentiate between millions of colours

I Three dimensions of colour:

- Hue (wave length)

- Brightness

- Saturation
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Colour Vision

I Young-Helmholtz-Theory: Tri-chromatic colour vision,
depending on three different types of cones (S, M, L)

I Cone types differ in the photopigments they contain

I All cone types react, to some degree, towards all wave lengths

I Colour is therefore coded by the pattern of cone activities
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Colour Vision

I What happens if light from different sources overlaps?

I Receptor activity is the sum of activities for the different wave
lengths

I If one receptor has a firing rate of 100, this may be caused by
the following input:
- Firing rate 100 for wave length A
- Firing rate 10 for wave length A and 90 for wave length B
- Firing rate 10 for A, 70 for B, 20 for C

I Best example: RGB colours (TV, computer monitors)
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Colour Vision

Source: www.handprint.com
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Colour Vision

I Additive Colour Mixing: Through overlap of chromatic light

I Chromatic light is characterized by a certain distribution of
wave lengths

I Through mixing, these distributions are added, resulting in a
new distribution

Achromatic light (white, black, greyscale): Uniform
distribution
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Colour Vision

Source: www.handprint.com

I Colour vision is not a copy of the physical world
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Colour Vision

I Additive Colour Mixing is a physiological (and ultimately
psychological) phenomenon, based on our receptors and the
processing of firing rates

I (In comparison, substractive colour mixing as done in painting
is a physical phenomenon)
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Colour Vision

I Colour Contrast: Areas adjacent to colours appear in their
complementary colour

I Complementary colours are blue - yellow; red - green (and
black - white)
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Colour Vision

Opponent-Process-Theory (Hering; Hurvich & Jameson)

I Theory postulates a layer of neurons in the visual system
receiving input from the cones

I These code the input in three pairs: red - green; blue - yellow;
black - white

I Depending on the input, these neurons fire more (perception
shifted towards one side of the pair) or less (perception shifts
towards the other side)

I Example:
Input shifts red-green to red and blue-yellow to blue
=⇒ Perception purple

Input shifts blue-yellow to blue but doesn’t affect red-green
=⇒ Perception blue
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Neural Networks - An overview
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Neural Networks - Overview

Interviewer:: Why should we hire you?
Applicant: I am an expert in machine learning.
Interviewer: So you’re good ad maths? What is 16 + 3?
Applicant: 4
Interviewer: That’s not even close, it’s 19!
Applicant: 13
Interviewer: No, it’s 19!
Applicant: 18
Interviewer: No, 19!
Applicant: 19
Interviewer: You’re hired!
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Neural Networks - Overview

I Nice overview about implementing neural networks in R can
be found here:
https://selbydavid.com/2018/01/09/neural-network/
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Neural Networks - Overview

I Neural Networks are similar to regression models: Predict
outcomes from predictors

I They learn weights linking predictor values to outcome values
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Neural Networks - Overview

I Computing the output (forward propagation):

y0 =
∑

wi · xi
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I Computing the output (forward propagation):

y = g(
∑

wi · xi )

, where g is the activation function
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Neural Networks - Overview

I Neural Networks can also predict multiple outcome values
from a set of predictors
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Neural Networks - Overview

I In that case, we have

yj = g(
∑

wij · xi )
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Neural Networks - Overview

I Neural networks are typically trained to obtain the weights.
Basic training procedure:
I Start with random weights
I Take a training item
I Compute output from predictors (forward propagation)
I Compute error between predicted output and actual output

(supervised learning)
I Adjust the weights according to the error (backpropagation)
I Take the next training item and repeat these steps
I Cycle through all training items until weights don’t really

change anymore
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Neural Networks - Overview
Backpropagation: The delta rule

I Closely correspondes to learning in the Rescorla-Wagner model

I (1) Compute difference between predicted and actual output

E =
1

2
(tj − yj)

2

To compute a weight change value from the error, the derivative of
the error function will enter the formula:

E ′ = (tj − yj)
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Neural Networks - Overview
Backpropagation: The delta rule

I (2) Adjust (multiply) by learning rate

α(tj − yj)
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Neural Networks - Overview
Backpropagation: The delta rule

I (3) Change in weight linking input xi to yj is this product
multiplied by input activation

∆wij = α(tj − yj) · xi

I This is the core delta rule for linear activation functions
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Neural Networks - Overview
Backpropagation: The delta rule

I (4) In the general case for any activation function, its
derivation is applied to the weighted input and included

∆wij = α(tj − yj)g
′(hj)xi

With hj =
∑

wijxi and yj = g(hj)
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Neural Networks - Overview
Backpropagation: The delta rule

I Training continues until the changes in weights ∆wij no
longer exceed a threshold value t. Every training cylce uses all
training items.
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Neural Networks - Overview

I Hidden layers are intermediate levels between input and output
I Typically, they take input from all nodes in the previous layer,

and give output to all nodes in the next layer
I In this case, it’s easiest to consider them as multiple, chained

neural networks where the output of layer n serves as input for
layer n + 1
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Neural Networks - Overview

I Hidden layers allow the network to deal with non-linearities

I Example: Predict color from x and y coordinates

without hidden layer with hidden layer
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Neural Networks - Overview

Play around with neural networks:

https://playground.tensorflow.org/
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The neuralnet package
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The neuralnet package

I Article describing the neuralnet package and its background:

Günther, F., & Fritsch, S. (2010). neuralnet: Training of
neural networks. The R journal, 2(1), 30-38.

(The author is Frauke Günther, not me)
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The neuralnet package

I Install the neuralnet package with
install.packages("neuralnet")

I Load the package with
library(neuralnet)
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The neuralnet package

I Load the colors.txt data set using
setwd("PATH TO DATA")

dat <- read.table("colors.txt")

(or specify the path directly in the read.table command)
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The neuralnet package

I The main function in the neuralnet package is the
neuralnet function

I This function trains a neural network from input data

I User defines network structure
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The neuralnet package

I Usage:

neuralnet(formula, data, hidden = 1, threshold =

0.01, stepmax = 1e+05, rep = 1, startweights =

NULL, learningrate.limit = NULL,

learningrate.factor = list(minus = 0.5, plus =

1.2), learningrate=NULL, lifesign = "none",

lifesign.step = 1000, algorithm = "rprop+",

err.fct = "sse", act.fct = "logistic",

linear.output = TRUE, exclude = NULL,

constant.weights = NULL, likelihood = FALSE)
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The neuralnet package

I Important Arguments:

neuralnet(formula, data, hidden = 1, threshold = 0.01, stepmax =

1e+05, rep = 1, startweights = NULL, learningrate.limit = NULL,

learningrate.factor = list(minus = 0.5, plus = 1.2),

learningrate=NULL, lifesign = "none", lifesign.step = 1000,

algorithm = "rprop+", err.fct = "sse", act.fct = "logistic",

linear.output = TRUE, exclude = NULL, constant.weights = NULL,

likelihood = FALSE)

formula A formula specifying the input and output
variables

As in all other models in R (such as lm() or aov()):

out1 + out2 ∼ var1 + var2 + var3
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The neuralnet package

I Important Arguments:

neuralnet(formula, data, hidden = 1, threshold = 0.01, stepmax =

1e+05, rep = 1, startweights = NULL, learningrate.limit = NULL,

learningrate.factor = list(minus = 0.5, plus = 1.2),

learningrate=NULL, lifesign = "none", lifesign.step = 1000,

algorithm = "rprop+", err.fct = "sse", act.fct = "logistic",

linear.output = TRUE, exclude = NULL, constant.weights = NULL,

likelihood = FALSE)

data The data frame containing the input and
output variables
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The neuralnet package

I Important Arguments:

neuralnet(formula, data, hidden = 1, threshold = 0.01, stepmax =

1e+05, rep = 1, startweights = NULL, learningrate.limit = NULL,

learningrate.factor = list(minus = 0.5, plus = 1.2),

learningrate=NULL, lifesign = "none", lifesign.step = 1000,

algorithm = "rprop+", err.fct = "sse", act.fct = "logistic",

linear.output = TRUE, exclude = NULL, constant.weights = NULL,

likelihood = FALSE)

hidden A vector specifying the hidden layer struc-
ture

hidden=0 No hidden layer
hidden=c(4,5) Two hidden layers: First layer with 4 nodes,

second layer with 5 nodes
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The neuralnet package

I Important Arguments:

neuralnet(formula, data, hidden = 1, threshold = 0.01, stepmax =

1e+05, rep = 1, startweights = NULL, learningrate.limit = NULL,

learningrate.factor = list(minus = 0.5, plus = 1.2),

learningrate=NULL, lifesign = "none", lifesign.step = 1000,

algorithm = "rprop+", err.fct = "sse", act.fct = "logistic",

linear.output = TRUE, exclude = NULL, constant.weights = NULL,

likelihood = FALSE)

threshold Specifies the threshold for weight adjust-
ments (training is considered as converging
if there are no more weight changes above
the threshold)
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The neuralnet package

I Important Arguments:

neuralnet(formula, data, hidden = 1, threshold = 0.01, stepmax =

1e+05, rep = 1, startweights = NULL, learningrate.limit = NULL,

learningrate.factor = list(minus = 0.5, plus = 1.2),

learningrate=NULL, lifesign = "none", lifesign.step = 1000,

algorithm = "rprop+", err.fct = "sse", act.fct = "logistic",

linear.output = TRUE, exclude = NULL, constant.weights = NULL,

likelihood = FALSE)

stepmax Maximum number of training steps
(One training step = one iteration over the
whole data set)
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The neuralnet package

I Important Arguments:

neuralnet(formula, data, hidden = 1, threshold = 0.01, stepmax =

1e+05, rep = 1, startweights = NULL, learningrate.limit = NULL,

learningrate.factor = list(minus = 0.5, plus = 1.2),

learningrate=NULL, lifesign = "none", lifesign.step = 1000,

algorithm = "rprop+", err.fct = "sse", act.fct = "logistic",

linear.output = TRUE, exclude = NULL, constant.weights = NULL,

likelihood = FALSE)

rep Number of repetitions (i.e. how often the
complete training algorithm is executed)
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The neuralnet package

I Important Arguments:

neuralnet(formula, data, hidden = 1, threshold = 0.01, stepmax =

1e+05, rep = 1, startweights = NULL, learningrate.limit = NULL,

learningrate.factor = list(minus = 0.5, plus = 1.2),

learningrate=NULL, lifesign = "none", lifesign.step = 1000,

algorithm = "rprop+", err.fct = "sse", act.fct = "logistic",

linear.output = TRUE, exclude = NULL, constant.weights = NULL,

likelihood = FALSE)

lifesign Observe training progress with
lifesign="full"
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The neuralnet package

I Important Arguments:

neuralnet(formula, data, hidden = 1, threshold = 0.01, stepmax =

1e+05, rep = 1, startweights = NULL, learningrate.limit = NULL,

learningrate.factor = list(minus = 0.5, plus = 1.2),

learningrate=NULL, lifesign = "none", lifesign.step = 1000,

algorithm = "rprop+", err.fct = "sse", act.fct = "logistic",

linear.output = TRUE, exclude = NULL, constant.weights = NULL,

likelihood = FALSE)

algorithm The learning algorithm (several included, see
the help-function). Standard backpropaga-
tion backprop requires a learningrate
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The neuralnet package

I Important Arguments:

neuralnet(formula, data, hidden = 1, threshold = 0.01, stepmax =

1e+05, rep = 1, startweights = NULL, learningrate.limit = NULL,

learningrate.factor = list(minus = 0.5, plus = 1.2),

learningrate=NULL, lifesign = "none", lifesign.step = 1000,

algorithm = "rprop+", err.fct = "sse", act.fct = "logistic",

linear.output = TRUE, exclude = NULL, constant.weights = NULL,

likelihood = FALSE)

err.fct The error function, computing the differ-
ence between network-predicted and ob-
served outcome. Sum of squared errors and
cross-entropy are included, other (differen-
tiable) functions can be provided
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The neuralnet package

I Important Arguments:

neuralnet(formula, data, hidden = 1, threshold = 0.01, stepmax =

1e+05, rep = 1, startweights = NULL, learningrate.limit = NULL,

learningrate.factor = list(minus = 0.5, plus = 1.2),

learningrate=NULL, lifesign = "none", lifesign.step = 1000,

algorithm = "rprop+", err.fct = "sse", act.fct = "logistic",

linear.output = TRUE, exclude = NULL, constant.weights = NULL,

likelihood = FALSE)

act.fct Activation function computing the output
value from the input values
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The neuralnet package

Task: Train a single-layer (i.e., no hidden layers) network to predict
the colour labels from the RGB code

Note: This is a physiological/psychological model, since additive
colour mixing is not a physical phenomenon!
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The neuralnet package

Inspecting the neural network

I Generic R functions
summary(network)

str(network)
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The neuralnet package

An nn object contains the following elements (along with the input
data):

net.results The network’s predicted output for the train-
ing data

weights The trained network weights
result.matrix Several indices summarizing the model (AIC,

BIC, number of steps, reached threshold, er-
ror)
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The neuralnet package

Inspecting the neural network

I The plot.nn function:
plot.nn(network)
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The neuralnet package

Predict output for given input

I The predict function:
predict(network,testset)

I The testset needs to have the same input variables as
specified for the network!
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The neuralnet package

What do we learn from our single-layer network?
Does it make sense?
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The neuralnet package

Task: Train a network with one hidden layer (three nodes) to
predict the colour labels from the RGB code

(Why?)
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The neuralnet package

Is the hidden-layer network better than the single-layer network?

Does it work as expected?
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The neuralnet package

In order to create the colors.txt data set, I just assigned colour
labels on an intuitive basis

What happens when we apply a more “theory-conform” labelling
system (including white and black)?
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The neuralnet package

Does it help to include this rectified sum as an additional one-node
hidden layer?
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