
Exploiting Graph Structure for Accelerating the Calculation of Shortest
Paths in Wordnets

Holger Wunsch
Collaborative Research Center 441 “Linguistic Data Structures”

University of Tübingen, Germany
wunsch@sfs.uni-tuebingen.de

Abstract

This paper presents an approach for sub-
stantially reducing the time needed to cal-
culate the shortest paths between all con-
cepts in a wordnet. The algorithm exploits
the unique “star-like” topology of word-
nets to cut down on time-expensive calcu-
lations performed by algorithms to solve
the all-pairs shortest path problem in gen-
eral graphs. The algorithm was applied to
two wordnets of two different languages:
Princeton WordNet (Fellbaum, 1998) for
English, and GermaNet (Kunze and Lem-
nitzer, 2002), the German language word-
net. For both wordnets, the time needed
for finding all shortest paths was brought
down from several days to a matter of
minutes.

1 Introduction

Significant effort has been devoted in linguistic re-
search to the problem of determining the semantic
distance1 between two concepts. Many of the ap-
proaches that were developed to provide a solution
for the task use wordnets as their basic knowledge
resource. Budanitsky and Hirst (2006) present an
extensive number of approaches for determining
lexical semantic relatedness based on the Prince-
ton WordNet (Fellbaum, 1998). A large number
of these solutions have in common that at some
point in the calculation, the length of the shortest
path that connects the two concepts in question has

c©2008. Licensed under theCreative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

1see Budanitsky and Hirst (2006) for a critical discussion
of the term “semantic distance”.

to be taken into account. The length of the short-
est path between two concepts is thus a vital piece
of information in virtually any approach for deter-
mining their semantic distance.

From a computer science perspective, a word-
net is a directed graph. The nodes in the graph
correspond to the concepts that are stored in the
wordnet. Two nodes are connected by an edge if
there exists a semantic relation between the two
concepts that correspond to the nodes. The edges
are directed, reflecting the directedness of seman-
tic relations in wordnets, such as the relation of
hypernymy. The problem of finding the shortest
path between two nodes in a graph has been well
studied in computer science. Sedgewick (1990)
presents two algorithms:

• Dijkstra’s algorithm finds the shortest path
between two concepts in quadratic time, and
is extensible to find the shortest paths be-
tween all concepts in cubic time.

• TheFloyd-Warshall algorithm, which is very
easy to implement, solves the all-pairs short-
est path problem in cubic time as well. The
Floyd-Warshall algorithm served as the base-
line algorithm for this paper.

Both algorithms operate on general directed
graphs. The structure of a directed graph is
sketched in figure 1. Given two nodes, there exist
multiple different paths that connect the two nodes.
In figure 1, in order to get from L to D, one could
take the path L–G–E–D, but also L–G–C–A–F–E–
D, and several other paths. An algorithm that looks
for the shortest path must deal with this situation
and basically be able to consider all alternatives.

Computing of the length of all shortest paths
with the Floyd-Warshall algorithm takes about 120



A

B

F

G

E

C

J
D

K

L M

H

I

Figure 1: Schematic structure of a general graph.
Example taken from Sedgewick (1990).

hours for GermaNet, using a compiler-optimized
C implementation on a machine equipped with
two AMD Opteron processors. GermaNet, which
contains 53,312 synsets2 in its current release 5,
is of moderate size, compared to the Princeton
WordNet, which contains more than twice as many
synsets. The execution time of 120 hours is accept-
able if the wordnet does not change, and the short-
est paths are calculated once and then kept for later
use. However, when the task involves the modifi-
cation of the wordnet itself and the repeated recal-
culation of all shortest paths, this is unacceptable.
In such cases the execution time will most likely
prohibit research involving such techniques.

It has been shown that there is no faster way for
solving the all-pairs shortest paths problem in gen-
eral graphs. However, the structure of wordnets
is somewhat different to that of a general directed
graph. It can best be described to be similar to that
of a star, as depicted in figure 2. In the middle,
there is a unique top node that dominates all other
nodes3. In the center area around the top node,
the synsets represent general concepts. Closer to
the fringe, the synsets become more and more spe-
cific. A typical configuration in this region would

2A synset is a set of words that are synonymous. Through-
out this paper, we will use the termsynset synonymously to
nodes in a graph, since the relevant relations (which are rep-
resented by edges in the graph) hold between synsets.

3In most wordnets such as Princeton WordNet or Ger-
maNet, there is usually no unique top node. Instead, there
is a set of most general concepts, calledunique beginners. In
the example in figure 2, the unique beginners would be the
synsets s1, s3, s11, s15, and s23. The algorithm presented
here requires the wordnet to be a connected graph, therefore
we stipulate an explicit artificial top node.

be a biological taxonomy of animals, or specific
kinds of vehicles. The number of such special-
ized synsets in the outer regions of the wordnet
outweighs the number of core concepts by several
orders of magnitude. In other words, the majority
of synsets in a wordnet is part of tree structures that
are arranged around a relatively small core graph.

In the remainder of this paper, we will present
an approach to solving the all-pairs shortest paths
problem in wordnets that is superior in execution
time by consistently exploiting this specific struc-
ture of wordnets.

2 Finding Paths In a Wordnet

We implemented the Floyd-Warshall algorithm as
our baseline. The Floyd-Warshall algorithm uses
a dynamic programming approach. The basic idea
is to find all shortest paths by first computing and
storing the paths lengths between nodes that are
close to each other, and then moving on to longer
paths by combining the results of the shorter paths.
The Floyd-Warshall algorithm uses a matrix that
contains for each pair of nodes the length of the
shortest path that connects the two nodes. The ma-
trix is initialized by setting the length of the short-
est path between any two adjacent nodes to 14. All
other fields are set to∞ (which indicates that no
path has been found (yet)). Then the algorithm
checks for any pair of nodesx andy whether there
exists a nodez such that the path fromx to y that
runs alongz is shorter than the path betweenx and
y that has been found so far.

Floyd-Warshall Algorithm

N : set of nodes
p: matrix that contains the lengths of the short-
est path between any nodex andy ∈ N .

Initialization Step
for all x, y ∈ N do

5: if neighbors(x, y) then
pxy := 1

else
pxy := ∞

end if
10: end for

4The Floyd-Warshall algorithm can also be used to calcu-
late shortest paths in weighted graphs in which case the matrix
would be initialized with the weights of the edges between
adjacent nodes. We will focus on unweighted graphs in this
paper.



Top

s1

s3

s4s5

s6

s2

s9
s10

s11

s12

s13

s14

s22

s18

s17s15s23

s25

s24

s16

s20
s19

s21

s7

s8

Figure 2: Schematic star-like structure of a wordnet.

Shortest Path Calculation
for all z ∈ N do

for all x, y ∈ N do
pxy := min(pxy, pxz + pzy)

15: end for
end for

Since theshortest of all possible paths must be
found, the Floyd-Warshall algorithm has to check
for any nodez if the pathx–z–y is the shortest.
Returning to the example in figure 2, the shortest
path betweenx = s1 andy = s16 is s1–Top–s15–
s16. The Floyd-Warshall algorithm also considers
the other possible paths, such as s1–s3–Top–s15–
s16 or s1–Top–s11–s17–s15–s16, which are even-
tually discarded because they turn out to be not the
shortest connection.

Now consider a path such as the one illustrated
in figure 3, which is the shortest undirected path
between the synsets s8 and s205. In order to find
this shortest path, the Floyd-Warshall algorithm
would checkall possible combinations of nodes
x–z–y in order to find a potential shorter alterna-
tive. To the human reader it is obvious that this is
an unnecessary amount of work: there is only one
path that leads from s8 to s1, because the part of
the wordnet rooted in s4 is in fact atree, and paths
connecting two nodes in trees are always unique.
The same is true for the structure rooted in s18.

5Since the edges in the graph correspond to the hypernymy
relations in the wordnet, they all point towards the top node.
In order to get from s8 to s20, one must first follow the path up
to the top node along the hypernymy axis, and then down to
s20 in the opposite direction. Therefore, paths are undirected.

Moreover, there is a unique link from s4 to s1, and
from s18 to s17. The synsets s1 and s17 are part of
the core structure of the wordnet with higher den-
sity. Here, between s1 and s17 there do exist more
than one paths which must all be considered by the
path finding algorithm.

The complexity of the Floyd-Warshall algorithm
results from the necessity of considering all possi-
ble paths through a general graph in order to find
the shortest one. Wordnets are graphs – but, as
explained above, they have a very special struc-
ture: There is a core graph consisting of a limited
number of synsets, but the majority of all synsets
is arranged in tree structures that are attached to
the core graph, which gives wordnets the star-like
structure described earlier.

This structure, which is specific to wordnets,
can be exploited such that expensive calculations
are only performed where necessary – in the core
graph of the wordnet – while specialized cheaper
calculations are used in the outer parts.

3 Structure-Adapted Shortest Path
Search

The observations about the structure of wordnets
and the nature of general algorithms to find all
shortest paths lead to the conclusion that an al-
gorithm that is adapted to the specific structure
of wordnets should be superior over general algo-
rithms with respect to execution time. In this sec-
tion, we will present such a structure-adapted ap-
proach. It operates in two stages: In the first stage,



Top

s1

s3

s4s5

s6

s2

s9
s10

s11

s12

s13

s14

s22

s18

s17s15s23

s25

s24

s16

s20
s19

s21

s7

s8

Figure 3: A path through the wordnet.

all nodes in the wordnet are classified whether they
are part of the core graph or a peripheral tree struc-
ture. The second stage is the shortest path search
proper, which uses the information about the struc-
ture of the wordnet that was acquired in the first
stage.

3.1 Stage 1: Node classification

In the first stage, the algorithm determines whether
a node belongs to the graph proper which consti-
tutes the core network, or to a tree structure in the
periphery. The algorithm classifies nodes in four
classes, which are illustrated in figure 4.

1. Inner nodes: Inner nodes belong to the graph
in the center of the network. A node is an in-
ner node if it has more than one parent node,
or if one of its children is an inner node.
In figure 4, inner nodes have a white back-
ground.

2. Root nodes: A root node, as suggested by its
name, is the root node of a tree. Root nodes
have a unique parent node, which must be an
inner node. In figure 4, root nodes have a dark
gray background, and thick borders.

3. Tree nodes: Tree nodes are part of a tree,
i.e. they have one unique parent node. This
parent node must either be a root node, or a
tree node as well. In figure 4, tree nodes have
a dark gray background (and thin borders).

4. Leaf nodes: Leaf nodes have a unique parent
node, which must be an inner node. They do
not have any child nodes. As such, leaf nodes
are actually a special case of a root node. But
for performance reasons, they will be handled
separately from root nodes. In figure 4, leaf
nodes have a light gray background.

Two remarks are in order. The tree structures
referred to in this classification rely on a well de-
fined parent-child relation. The hypernymy rela-
tion, which is the only relation between synsets we
consider in this paper, is a directed relation that
satisfies this property: if synsetx is a hypernym of
synsety, thenx is a parent node ofy.

The difference between the termstree node and
leaf node may seem a little arbitrary – consider-
ing for example s8, which is a tree node, and s9,
which is a leaf node. Both nodes do not have child
nodes. However, from a performance perspective,
it is advantageous to treat leaf nodes and tree nodes
differently in the algorithm, which is why two dif-
ferent nodes types are assumed.

3.2 Stage 2: Shortest Path Search

The second stage is the actual pathfinding step.
The underlying basic idea is tosplit the calcula-
tion: Consider the sample path in figure 3 between
synsets s8 and s20. This path runs through three
regions of the wordnet. The synsets in the first part
of the path, s8-s5-s4 all belong to the tree that is
rooted in synset s4. Then the path enters the core



Top

s1

s3

s4s5

s6

s2

s9
s10

s11

s12

s13

s14

s22

s18

s17s15s23

s25

s24

s16

s20
s19

s21

s7

s8

Figure 4: Node classes. White: inner nodes; dark gray: tree nodes; dark gray with thick border: root
nodes; light gray: leaf nodes.

graph and runs along s1-Top-s15-s176. The third
part of the path is s18-s20. Again, the correspond-
ing synsets are members of a tree whose root is
s18.

The important point is that for any part of a path
that runs though a tree, this is theonly possible
path through the tree. A general algorithm for find-
ing the shortest path out of a set of multiple pos-
sible paths is not necessary here. This way, it is
possible to restrict the application of general but
time-expensive algorithms to the area of the word-
net where this is needed – the core of the network,
while elsewhere it is sufficient to just determine the
length of a path through a tree, a task which can be
solved very efficiently.

Returning to our example, the algorithm splits
the calculation of the shortest path between s8 and
s20 as follows: Both s8 and s20 are part of a tree,
as determined in step 1. The root of the tree that
s8 is a member of is s4. The length of the path
between s2 and s4 is 2. s4’s parent node is s1.
Root nodes have a unique parent node by defini-
tion. Therefore we know that only s1 can be the
next node on the path, and its distance is 1, since
s4 and s1 are neighbors. So, the length of the path
up to s1 is 3. In the same fashion, the length of
the other part of the path that is located in a tree,
the path between s20 and s17, can be computed.

6there are actually two possible paths of the same length
(8) – the other possible path would be the one that runs along
synset s11.

The length of this part is 2. Now there remains
the part between node s1 and s17. This part of the
path runs through the core graph. Here, a general
algorithm for finding shortest paths, such as the
Floyd-Warshall algorithm, must be used to com-
pute the path’s length. The length of the shortest
possible path within this region turns out to be 3.
Now the lengths of all parts of the path have been
determined – and the total length of the shortest
path is just the sum of the three parts, which is 8.

4 Implementation

This section will present pseudo-code for the two
stages of structure-adapted shortest path search.

4.1 Stage 1: Node classification

Stage 1 explores a wordnet and classifies every
node whether it is an inner node, or a root, tree, or
leaf node. The procedure starts out by classifying
as leaf nodes all nodes that are childless and that
have one unique parent node. Note however that
the definition of a leaf node requires that its parent
node be an inner node. This constraint can not be
checked at this point, since information about in-
ner nodes is not yet available. Therefore the check
is postponed until later.

Next, any node that has more than one parent
node is classified as an inner node. The transitive
closure of all of this node’s parent nodes is classi-
fied as inner nodes as well.

The remaining nodes that have not been classi-



fied so far are either root or tree nodes. A node
is a root node if its parent node is an inner node,
otherwise it is a tree node.

The last step is to check the constraint on leaf
nodes which has been postponed. As stated in the
definition, leaf nodes are childless and have an in-
ner node as parent. Nodes with no children whose
parent node is either a root node or a tree node are
not leaf nodes, but rather tree nodes. Thus, each
potential leaf node is visited to ensure that its par-
ent node is in fact an inner node in which case the
classification as a leaf node remains unchanged.
Otherwise, the node is reclassified as tree node.

The pseudocode of the node classification algo-
rithm is listed below.

Node Classification Algorithm7

N : set of nodes
Node classes: inner , leaf , root , tree,
undefined

Classify leaf nodes
for all n ∈ N do

5: if |children(n)| = 0 ∧
|parents(n)| = 1 then

assign class(n, leaf )
end if

end for

Classify inner nodes
10: for all n ∈ N do

if |parents(n)| > 1 then
if class(n) 6= inner then

assign class(n, inner)
{All parent nodes of inner nodes are
inner nodes as well}

15: for all m ∈ parents∗(n) do
assign class(m, inner)

end for
end if

end if
20: end for

Classify root and tree nodes
for all n ∈ N do

if class(n) = undefined then
if class(parents(n)[0]) = inner then

25: assign class(n, root)

7Notes on the notation:parents(n) andchildren(n) are
functions that return a list of all parent or child nodes of the
noden. parents(n)[0] returns the first node in the list of
parent nodes ofn. parents∗(n) is the transitive closure of
all parent nodes ofn. |parents(n)| is the number of parent
nodes ofn.

else
assign class(n, tree)

end if
end if

30: end for

Reclassify leaf nodes as tree nodes if they
are children of tree nodes
for all n ∈ N do

if class(n) = leaf then
if class(parents(n)[0]) = root ∨
class(parents(n)[0]) = leaf then

35: assign class(n, tree)
end if

end if
end for

4.2 Stage 2: Finding Shortest Paths

The actual calculation of shortest paths takes place
in stage 2. In order to calculate the shortest paths
between two nodesx andy, two main cases are
considered.

4.2.1 x and y do not belong to the same tree

x andy do not belong to the same tree if the root
nodes of the trees thatx andy are members of are
different: root(x) 6= root(y).

The path fromx toy is then split into three parts:

• lxix : the length of the subpath fromx to the
first inner nodeix on the path.

• lyiy : the length of the subpath fromy to the
first inner nodeiy on the path.

• lixiy : the length of the subpath fromix to iy,
which runs through the core.

The following cases are considered by the algo-
rithm:

1. x is an inner node: ix = x, andlxix = 0.

2. x is a tree node: lxix is the length of the path
from x to the root node of the treerx, plus 1
to get fromrx to ix: lxix := lxrx

+ 1.

3. x is a leaf node or a root node: lxix is 1.

4. y is an inner node: iy = y, andlyiy = 0.

5. y is a tree node: lyiy is the length of the path
from y to the root node of the treery, plus 1
to get fromry to iy: lyiy := lyry

+ 1.

6. y is a leaf node or a root node: lyiy is 1.



The length of the pathlixiy (the path running
through the core graph) is calculated using the
Floyd-Warshall algorithm, that islixiy = pixiy

(see the description of the Floyd-Warshall algo-
rithm above).

The total length of the shortest path is then
lxy := lxix + lixiy + lyiy .

4.2.2 x and y belong to the same tree

This is a special case that is treated differently
from all other cases. Letz be the lowest node in
the tree that dominates bothx andy (wherez may
be equal tox or y). Thenlxy = lxz + lyz.

Shortest Paths Algorithm

Input:
Two nodesx, y ∈ N .
Path matrixp for nodes in the core graph as
calculated by Floyd-Warshall

Output:
5: The length of the shortest path betweenx and

y, lxy.
if ((class(x) = root ∨ class(x) = tree) ∧
(class(y) = root ∨ class(y) = tree)) ∧
root(x) = root(y) then

First case:x andy belong to the same tree

Let z ∈ S be the lowest common subsumer
of x andy.
lxy := lxz + lyz

10: return lxy

else
Second case:x andy do not belong to the
same tree

ix := x;
iy := y;

15: if class(x) = tree then
rx := root(x)
lxix := lxrx

+ 1
else ifclass(x) = root ∨ class(x) = leaf

then
lxix := 1

20: else
lxix := 0

end if
if class(y) = tree then

ry := root(y)
25: lyiy := lyry

+ 1
else ifclass(y) = root ∨ class(y) = leaf

then
lyiy := 1

else

lyiy := 0
30: end if

lxy := lxix + lixiy + lyiy

end if

5 Experiments and Results

5.1 The Data

In order to assess the performance of structure
adapted path search, we experimented with two
different wordnets. For English, we looked at
Princeton WordNet (Fellbaum, 1998) in its current
release 3, which contains 117,659 synsets. Only
4,250 of these synsets belong to the core network.
The remaining 113,410 nodes are members of pe-
ripheral tree structures, which amounts to 96 % of
all nodes.

Furthermore, we applied the approach to
GermaNet (Kunze and Lemnitzer, 2002) for Ger-
man. The architecture of GermaNet is modelled
after Princeton WordNet and is largely compati-
ble. GermaNet, in its current release 5.0, contains
53,312 synsets. Out of these, 8,728 synsets are
members of the core of the network (i.e. the part
of the network that is a graph proper). The remain-
ing 44,273 synsets are part of peripheral tree struc-
tures (or leaf nodes). Hence, 83% of the synsets
in GermaNet are part of substructures that do not
require a general algorithm for calculating shortest
paths.

The topology of GermaNet is thus slightly dif-
ferent than that of WordNet. The fact that more
nodes belong to the core graph indicates that
GermaNet’s density with respect to the hypernymy
relation is higher than the density of WordNet on
the level of the more abstract concepts.

5.2 Application of the Algorithm

We conducted our experiments on a machine
equipped with two AMD Opteron 250 processors
running at 2.4 GHz and 8 GB of main memory.

For the path-finding stage, we implemented two
C programs. Both operate on the same input. Both
programs were compiled using gcc’s-O3 option
for maximum optimization.

The first program only used the Floyd-Warshall
algorithm – the node classes were effectively ig-
nored. For WordNet, the estimated processing
time was at least 35 days. This value was com-
puted by interpolating the time that had passed
to process 15,000 synsets. At this point, the
tests were aborted. Since Floyd-Warshall becomes



Princeton WordNet
Synsets 117,659
Inner nodes 4,250
Root nodes 7,174
Tree nodes 56,532
Leaf nodes 49,704
Node classification time ca. 1 second
Floyd-Warshall path search > 35 days
Structure-adapted path search 9 minutes

GermaNet
Synsets 53,312
Inner nodes 8,728
Root nodes 4,641
Tree nodes 18,949
Leaf nodes 20,683
Node classification time 1.2 seconds
Floyd-Warshall path search 120 hours
Structure-adapted path search 40 minutes

Table 1: Structure-adapted path search – Summary
of results

slower the more nodes have been processed, this
value is likely to be even higher. GermaNet con-
tains only half of the synsets, and the Floyd-
Warshall algorithm completed in 120 hours8. The
result, a matrix of 53,312×53,312 elements, con-
taining the lengths of the shortest paths between all
nodes, was written to a binary file whose size was
roughly 3 GB.

In the second program, we implemented the
structure-adapted shortest path search approach.
For calculating shortest paths in the core graph
area of the network, we used the same implemen-
tation of the Floyd-Warshall algorithm as in the
first program. With the same input data and the
same machine, we were able to bring the execution
time down to 40 minutes for GermaNet, and only
9 minutes for WordNet. This includes creating the
output file, which had the same binary format as
the one generated by the first program. The dif-
ference in processing time between WordNet and
GermaNet stems from the smaller core graph in
WordNet, which allows for even more nodes to be
excluded from the time consuming Floyd-Warshall
calculation. The results of the experiments are
summarized in table 1.

8The complexity of the Floyd-Warshall algorithm is cubic,
therefore twice as many synsets result in a processing effort
that is eight times higher.

6 Discussion

The experiments show that with a thorough pre-
analysis of the structure of a wordnet and consis-
tent usage of this additional information, the time
it takes to calculate all shortest paths can be re-
duced dramatically. This is because most nodes in
a wordnet are part of substructures that are proper
trees and not general graphs. In trees, it is possible
to calculate the length of a path very much more
efficiently than in an arbitrarily-structured graph.

We successfully applied structure-adapted path
search to two wordnets, the Princeton WordNet
and GermaNet. Since the algorithm does not rely
on concrete properties of a specific wordnet, it can
easily be applied to wordnets for other languages.

The benefits of structure adaptation diminish
with increasing density of the network as more
and more nodes become part of the core graph. In
this case, the execution time will approach that of
the Floyd-Warshall algorithm. It is also obvious
that the approach does not generalize to arbitrary
graphs. As long as the structure of graphs is sim-
ilar to the star-like structure of wordnets, we ex-
pect the approach to be beneficial in applications
involving such graphs as well.

References

Budanitsky, A. and Hirst, G. (2006). Evaluating
WordNet-based Measures of Lexical Semantic
Relatedness. InComputational Linguistics, vol-
ume 32. Association for Computational Lin-
guistics.

Fellbaum, C. (1998).WordNet: An Electronic Lex-
ical Database. MIT Press, Cambridge, MA.

Kunze, C. and Lemnitzer, L. (2002). GermaNet
– Representation, Visualization, Application. In
Proceedings of LREC, pages 1485–1491.

Sedgewick, R. (1990).Algorithms in C. Addison
Wesley.


