1

Significant effort has been devoted in linguistic re-
search to the problem of determining the semantic
distancé between two concepts. Many of the ap-

Exploiting Graph Structure for Accelerating the Calculation of Shortest

Paths in Wordnets

Holger Wunsch
Collaborative Research Center 441 “Linguistic Data Strusture
University of Tubingen, Germany
wunsch@f s. uni -t uebi ngen. de

Abstract

This paper presents an approach for sub-
stantially reducing the time needed to cal-
culate the shortest paths between all con-
cepts in a wordnet. The algorithm exploits
the unique “star-like” topology of word-
nets to cut down on time-expensive calcu-
lations performed by algorithms to solve
the all-pairs shortest path problem in gen-
eral graphs. The algorithm was applied to
two wordnets of two different languages:
Princeton WordNet (Fellbaum, 1998) for
English, and GermaNet (Kunze and Lem-
nitzer, 2002), the German language word-
net. For both wordnets, the time needed
for finding all shortest paths was brought
down from several days to a matter of
minutes.

Introduction

to be taken into account. The length of the short-
est path between two concepts is thus a vital piece
of information in virtually any approach for deter-
mining their semantic distance.

From a computer science perspective, a word-
net is a directed graph. The nodes in the graph
correspond to the concepts that are stored in the
wordnet. Two nodes are connected by an edge if
there exists a semantic relation between the two
concepts that correspond to the nodes. The edges
are directed, reflecting the directedness of seman-
tic relations in wordnets, such as the relation of
hypernymy. The problem of finding the shortest
path between two nodes in a graph has been well
studied in computer science. Sedgewick (1990)
presents two algorithms:

e Dijkstra’s algorithm finds the shortest path
between two concepts in quadratic time, and
is extensible to find the shortest paths be-
tween all concepts in cubic time.

e TheFloyd-Warshall algorithm, which is very
easy to implement, solves the all-pairs short-
est path problem in cubic time as well. The

proaches that were developed to provide a solution
for the task use wordnets as their basic knowledge
resource. Budanitsky and Hirst (2006) present an
extensive number of approaches for determining Both algorithms operate on general directed
lexical semantic relatedness based on the Princgraphs. The structure of a directed graph is
ton WordNet (Fellbaum, 1998). A large numberfsketched in figure 1. Given two nodes, there exist
of these solutions have in common that at someultiple different paths that connect the two nodes.
point in the calculation, the length of the shortesin figure 1, in order to get from L to D, one could
path that connects the two concepts in question hgske the path L-G-E-D, but also L-G-C—-A-F-E—
T ©2008. Licensed under thereative Commons D> and several other paths. An algorithm that looks
Attribution-Noncommercial-Share Alike 3.0 Unported li-  for the shortest path must deal with this situation
cense  (http://creativecommons.org/licenses/by-nc-sa/3.04nq basically be able to consider all alternatives.
Some rights reserved. .

Computing of the length of all shortest paths

see Budanitsky and Hirst (2006) for a critical discussion ) X
of the term “semantic distance”. with the Floyd-Warshall algorithm takes about 120

Floyd-Warshall algorithm served as the base-
line algorithm for this paper.



be a biological taxonomy of animals, or specific
kinds of vehicles. The number of such special-
ized synsets in the outer regions of the wordnet
outweighs the number of core concepts by several
orders of magnitude. In other words, the majority
of synsets in a wordnet is part of tree structures that
are arranged around a relatively small core graph.

In the remainder of this paper, we will present
an approach to solving the all-pairs shortest paths
problem in wordnets that is superior in execution
time by consistently exploiting this specific struc-
ture of wordnets.

_ _ 2 Finding Paths In a Wordnet
Figure 1: Schematic structure of a general graph.

Example taken from Sedgewick (1990). We implemented the Floyd-Warshall algorithm as
our baseline. The Floyd-Warshall algorithm uses
a dynamic programming approach. The basic idea
hours for GermaNet, using a compiler-optimizeds to find all shortest paths by first computing and
C implementation on a machine equipped witlstoring the paths lengths between nodes that are
two AMD Opteron processors. GermaNet, whicltlose to each other, and then moving on to longer
contains 53,312 synsétin its current release 5, paths by combining the results of the shorter paths.
is of moderate size, compared to the Princetofihe Floyd-Warshall algorithm uses a matrix that
WordNet, which contains more than twice as mangontains for each pair of nodes the length of the
synsets. The execution time of 120 hours is accepghortest path that connects the two nodes. The ma-
able if the wordnet does not change, and the shottrix is initialized by setting the length of the short-
est paths are calculated once and then kept for latest path between any two adjacent nodes'toAll
use. However, when the task involves the modifiether fields are set too (which indicates that no
cation of the wordnet itself and the repeated recapath has been found (yet)). Then the algorithm
culation of all shortest paths, this is unacceptablehecks for any pair of nodesandy whether there
In such cases the execution time will most likelyexists a node such that the path from to y that
prohibit research involving such techniques. runs along: is shorter than the path betweeand

It has been shown that there is no faster way for that has been found so far.
solving the all-pairs shortest paths problem in gen:
eral graphs. However, the structure of wordnets
is somewhat different to that of a general directed 1V St of nodes
graph. It can best be described to be similar to that ?: Matrix that contains the lengths of the short-
of a star, as depicted in figure 2. In the middle, €St path between any nodeandy € N.
there is a unique top node that dominates all other Initialization Step
nodes. In the center area around the top node, forall =, € N do
the synsets represent general concepts. Closer ta  if neighbors(z,y) then

loyd-Warshall Algorithm

the fringe, the synsets become more and more spe- Dry = 1

cific. A typical configuration in this region would else

- Py 1= 00
2/ synset is a set of words that are synonymous. Through- end if

out this paper, we will use the tergynset synonymously to
nodes in a graph, since the relevant relations (which are rep-
resented by edges in the graph) hold between synsets.

3In most wordnets such as Princeton WordNet or Ger-
maNet, there is usually no unique top node. Instead, there
is a set of most general concepts, calliaue beginners. In 4The Floyd-Warshall algorithm can also be used to calcu-
the example in figure 2, the unique beginners would be thiate shortest paths in weighted graphs in which case the matrix
synsets s1, s3, sl11, s15, and s23. The algorithm presentgduld be initialized with the weights of the edges between
here requires the wordnet to be a connected graph, therefadjacent nodes. We will focus on unweighted graphs in this
we stipulate an explicit artificial top node. paper.

10: end for



Figure 2: Schematic star-like structure of a wordnet.

Shortest Path Calculation Moreover, there is a unique link from s4 to s1, and
forall z € N do from s181to s17. The synsets sl and s17 are part of
forall z,y € N do the core structure of the wordnet with higher den-
Pay = Min(Day, Paz + Day) sity. Here, between s1 and s17 there do exist more
15:  end for than one paths which must all be considered by the
end for path finding algorithm.

Since theshortest of all possible paths must be ~ The complexity of the Floyd-Warshall algorithm
found, the Floyd-Warshall algorithm has to checkesults from the necessity of considering all possi-
for any node z if the pathz—z—y is the shortest. ble paths through a general graph in order to find
Returning to the example in figure 2, the shorteghe shortest one. Wordnets are graphs — but, as
path between: = s1 andy = s16 is s1-Top—s15— €xplained above, they have a very special struc-
s16. The Floyd-Warshall algorithm also consider§!re: There is a core graph consisting of a limited
the other possible paths, such assFop—s15— Nnumber of synsets, but the majority of all synsets
516 or s1-Topslts17-s15-s16, which are even-is arranged in tree structures that are attached to
tually discarded because they turn out to be not tiH8e core graph, which gives wordnets the star-like
shortest connection. structure described earlier.

Now consider a path such as the one illustrated This structure, which is specific to wordnets,
in figure 3, which is the shortest undirected pati§an be exploited such that expensive calculations
between the synsets s8 and 2 order to find are only performed where necessary — in the core
this shortest path, the Floyd-Warshall algorithn9raph of the wordnet — while specialized cheaper
would checkall possible combinations of nodes calculations are used in the outer parts.

x—z—y in order to find a potential shorter alterna-

tive. To the human reader it is obvious that this i$ Structure-Adapted Shortest Path
an unnecessary amount of work: there is only one S€arch

phath that leads from S8 t_o Slf because the phart %e observations about the structure of wordnets
the wordnet rooted in s4 is in facteee, and paths ;4 the nature of general algorithms to find all
C(r)]nnectlng_two no;jes r']n trees are always UNiqUgp,est paths lead to the conclusion that an al-
The same is true for the structure rooted in S18iim that is adapted to the specific structure
SSince the edges in the graph correspond to the hypernyn®f wordnets should be superior over general algo-
relations in the wordnet, they all point towards the top noderithms with respect to execution time. In this sec-

In order to get from s8 to s20, one must first follow the path up. il h d d
fﬁon, we will present such a structure-adapted ap-

to the top node along the hypernymy axis, and then down ; ‘
$20 in the opposite direction. Therefore, paths are undirecteproach. It operates in two stages: In the first stage,



Figure 3: A path through the wordnet.

all nodes in the wordnet are classified whether they 4. Leaf nodes Leaf hodes have a unique parent

are part of the core graph or a peripheral tree struc- node, which must be an inner node. They do
ture. The second stage is the shortest path search not have any child nodes. As such, leaf nodes
proper, which uses the information about the struc-  are actually a special case of a root node. But
ture of the wordnet that was acquired in the first  for performance reasons, they will be handled
stage. separately from root nodes. In figure 4, leaf

nodes have a light gray background.
3.1 Stage 1: Node classification

In the first stage, the algorithm determines whether TWO remarks are in order. The tree structures
a node belongs to the graph proper which constiéferred to in this classification rely on a well de-
tutes the core network, or to a tree structure in thned parent-child relation. The hypernymy rela-

periphery. The algorithm classifies nodes in foufion, Whichis the only relation between synsets we
classes, which are illustrated in figure 4. consider in this paper, is a directed relation that

satisfies this property: if synsetis a hypernym of

1. Inner nodes Inner nodes belong to the graphsynse'ry,_then:c is a parent node of.
in the center of the network. A node is an in- The difference between the terrmee node and

ner node if it has more than one parent nodd€&f node may seem a little arbitrary — consider-
or if one of its children is an inner node,NY for example s8, which is a tree node, and s9,
In figure 4, inner nodes have a white backyvhich is a leaf node. Both nodes do not have child
nodes. However, from a performance perspective,
itis advantageous to treat leaf nodes and tree nodes

2. Root nodes A root node, as suggested by i,[Sdifferently in the algorithm, which is why two dif-
rent nodes types are assumed.

name, is the root node of a tree. Root nodege
have a unique parent node, which must be a
inner node. In figure 4, root nodes have a dar
gray background, and thick borders. The second stage is the actual pathfinding step.
The underlying basic idea is w®plit the calcula-

3. Tree nodes Tree nodes are part of a tree tion: Consider the sample path in figure 3 between
i.e. they have one unique parent node. Thisynsets s8 and s20. This path runs through three
parent node must either be a root node, or gegions of the wordnet. The synsets in the first part
tree node as well. In figure 4, tree nodes havef the path, s8-s5-s4 all belong to the tree that is
a dark gray background (and thin borders). rooted in synset s4. Then the path enters the core

ground.

.2 Stage 2: Shortest Path Search



©
= 6‘@23
&

Figure 4. Node classes. White: inner nodes; dark gray: tree noddsgday with thick border: root
nodes; light gray: leaf nodes.

graph and runs along s1-Top-s15-817The third The length of this part is 2. Now there remains
part of the path is s18-s20. Again, the correspondhe part between node s1 and s17. This part of the
ing synsets are members of a tree whose root fEmth runs through the core graph. Here, a general
s18. algorithm for finding shortest paths, such as the
The important point is that for any part of a pathFloyd-Warshall algorithm, must be used to com-
that runs though a tree, this is tloaly possible pute the path’s length. The length of the shortest
path through the tree. A general algorithm for findpossible path within this region turns out to be 3.
ing the shortest path out of a set of multiple posNow the lengths of all parts of the path have been
sible paths is not necessary here. This way, it idetermined — and the total length of the shortest
possible to restrict the application of general bupath is just the sum of the three parts, which is 8.
time-expensive algorithms to the area of the word- ]
net where this is needed — the core of the netword, IMmplementation

while elsewhere it is sufficient to just determine ther,ig section will present pseudo-code for the two

length of a path through a tree, a task which can hg, yes of structure-adapted shortest path search.
solved very efficiently.

Returning to our example, the algorithm splits4.1 Stage 1: Node classification

the calculation of the shortest path between s8 a@tage 1 explores a wordnet and classifies every
s20 as follows: Both s8 and s20 are part of a trégy, e whether it is an inner node, or a root, tree, or
as determined in step 1. The root of the tree thal s node. The procedure starts out by classifying
s8 is a member of is s4. The length of the patlis |eaf nodes all nodes that are childless and that
between s2 and s4 is 2. s4's parent node i Slaye one unique parent node. Note however that
Root nodes have a unique parent node by defig gefinition of a leaf node requires that its parent
tion. Therefore we know that only s1 can be the,qge pe an inner node. This constraint can not be
next node on the path, and its distance is 1, sinG&ecked at this point, since information about in-

s4 and s1 are neighbors. So, the length of the paffa; hodes is not yet available. Therefore the check
up to slis 3. In the same fashion, the length gf postponed until later.

the other part of the path that is located in a tree, Next, any node that has more than one parent

the path between s20 and s17, can be computqglje is classified as an inner node. The transitive
———— , closure of all of this node’s parent nodes is classi-
there are actually two possible paths of the same leng

(8) — the other possible path would be the one that runs anRlbed as |nner' n_OdeS as well. )
synset s11. The remaining nodes that have not been classi-



fied so far are either root or tree nodes. A node else
is a root node if its parent node is an inner node, assign_class(n, tree)
otherwise it is a tree node. end if

The last step is to check the constraint on leaf end if
nodes which has been postponed. As stated in tf#e: end for
definition, leaf nodes are childless and have an in-  Reclassify leaf nodes as tree nodes if they
ner node as parent. Nodes with no children whose gre children of tree nodes
parent node is either a root node or a tree node are for all n € N do
not leaf nodes, but rather tree nodes. Thus, each if class(n) = leaf then
potential leaf node is visited to ensure that its par- if class(parents(n)[0]) = root V
ent node is in fact an inner node in which case the class(parents(n)[0]) = leaf then
classification as a leaf node remains unchangeds: assign_class(n, tree)
Otherwise, the node is reclassified as tree node. end if

The pseudocode of the node classification algo- end if
rithm is listed below. end for

Node Classification Algorithm’ 4.2 Stage 2: Finding Shortest Paths

N set of nodes The actual calculation of shortest paths takes place
Node classes: inner, leaf, root, tree, in stage 2. In order to calculate the shortest paths
undefined between two nodes andy, two main cases are
Classify leaf nodes considered.

forall n € N do

5. if |children(n)| = 0 A 4.2.1 x andy do not belong to the same tree

|parents(n)| = 1 then 2 andy do not belong to the same tree if the root
assign_class(n, leaf) npdes of the trees thatandy are members of are

end if different: root(x) # root(y).

The path frome to y is then splitinto three parts:

end for
Classify inner nodes e [,; . the length of the subpath fromto the
10: forall n € N do first inner node,. on the path.
if |parents(n)| > 1 then
if class(n) # inner then e l,;,: the length of the subpath fromto the
assign_class(n, inner) firstinner node, on the path.

{All parent nodes of inner nodes are

inner nodes as well e l;,i,: the length of the subpath froi to i,

which runs through the core.

15: for all m € parents*(n) do
assign-class(m, inner) The following cases are considered by the algo-
end for rithm:
end if
end if 1. zis an inner node i, = x, andl,;, = 0.
20: end for

2. xis atree node I ;, is the length of the path
from z to the root node of the treg,, plus 1

Classify root and tree nodes :
to get fromr, t0i,: 1y, = lor, + 1.

forall n € N do

if _Class(") = undefined then 3. zis a leaf node or a root node,;, is 1.
if class(parents(n)[0]) = inner then
25 assign_class(n, root) 4. y is an inner node i, = y, andl,;, = 0.

"Notes on the notation: parents(n) andchildren(n) are 5. yis atree node [, is the length of the path
functions that return a list of all parent or child nodes of the from y to the root hode of the tre@ plus 1
noden. parents(n)[0] returns the first node in the list of . ’
parent nodes oh. parents*(n) is the transitive closure of to get fromry toiy: ly;, := Ly, + 1.
all parent nodes of.. |parents(n)| is the number of parent
nodes ofn. 6. y is a leaf node or a root nodel,;, is 1.



The length of the path;,;, (the path running
through the core graph) is calculated using theo:
Floyd-Warshall algorithm, that is;
(see the description of the Floyd-Warshall algo-

rithm above). )
The total length of the shortest path is the® EXperiments and Results

lxy = l:r:zz + lzmzy + lyiy-

4.2.2 z andy belong to the same tree
This is a special case that is treated differentipdapted path search, we experimented with two

from all other cases. Let be the lowest node in different wordnets.

wiy = Digiy

lyi, =0
end if
l:py = lzzz + lzzzy + lyiy
end if

5.1 The Data
In order to assess the performance of structure

For English, we looked at

the tree that dominates bathandy (wherez may ~ Princeton WordNet (Fellbaum, 1998) in its current
be equal tac ory). Thenl,, = ;. + ly..

Shortest Paths Algorithm

10:

15:

20:

25:

Input:
Two nodesr,y € N.

release 3, which contains 117,659 synsets. Only
4,250 of these synsets belong to the core network.
The remaining 113,410 nodes are members of pe-
ripheral tree structures, which amounts to 96 % of
all nodes.

Path matrixp for nodes in the core graph as Furthermore, we applied the approach to

calculated by Floyd-Warshall
Output:

The length of the shortest path betweeand

Ys lay.

if ((class(xz) = root V class(z) = tree) A
(class(y) = root V class(y) = tree)) A
root(x) = root(y) then

First case: x andy belong to the same tree

GermaNet (Kunze and Lemnitzer, 2002) for Ger-
man. The architecture of GermaNet is modelled
after Princeton WordNet and is largely compati-
ble. GermaNet, in its current release 5.0, contains
53,312 synsets. Out of these, 8,728 synsets are
members of the core of the network (i.e. the part
of the network that is a graph proper). The remain-
ing 44,273 synsets are part of peripheral tree struc-
tures (or leaf nodes). Hence, 83% of the synsets

Letz € S be the lowest common subsumelin GermaNet are part of substructures that do not

of z andy.

lry =gy + lyz

return gy
else

Second casex andy do not belong to the

same tree

iy = T,

by =1,

if class(xz) = tree then
Ty i= r00t(T)
laziz = l:crz +1

else if class(z) = root V class(x) = leaf

then
lpi, =1
else
lgi, :=10
end if
if class(y) = tree then
1y = 100t (Y)
lyiy = lyry +1
else if class(y) = root V class(y) = leaf
then
lyi, =1
else

require a general algorithm for calculating shortest
paths.

The topology of GermaNet is thus slightly dif-
ferent than that of WordNet. The fact that more
nodes belong to the core graph indicates that
GermaNet’s density with respect to the hypernymy
relation is higher than the density of WordNet on
the level of the more abstract concepts.

5.2 Application of the Algorithm

We conducted our experiments on a machine
equipped with two AMD Opteron 250 processors
running at 2.4 GHz and 8 GB of main memory.

For the path-finding stage, we implemented two
C programs. Both operate on the same input. Both
programs were compiled using gce'€3 option
for maximum optimization.

The first program only used the Floyd-Warshall
algorithm — the node classes were effectively ig-
nored. For WordNet, the estimated processing
time was at least 35 days. This value was com-
puted by interpolating the time that had passed
to process 15,000 synsets. At this point, the
tests were aborted. Since Floyd-Warshall becomes



Princeton WordNet 6 Discussion

Synsets 117,659 . .

Inner nodes 4,250 The experiments show that with a thorough pre-
Root nodes 7174 analysis of the structure of a wordnet and consis-
Tree nodes 56,532 tent usage of this additional information, the time

Leaf nodes 49,704 it takes to calculate all shortest paths can be re-
Node classification time ca. 1 secohd duced dramatically. This is because most nodes in

a wordnet are part of substructures that are proper
trees and not general graphs. In trees, it is possible
to calculate the length of a path very much more

Floyd-Warshall path search > 35 days
Structure-adapted path search 9 minute

1°2)

GermaNet efficiently than in an arbitrarily-structured graph.
Synsets 53,312 We successfully applied structure-adapted path
Inner nodes 8,728 search to two wordnets, the Princeton WordNet
Root nodes 4,641 and GermaNet. Since the algorithm does not rely
Tree nodes 18,949 on concrete properties of a specific wordnet, it can
Leafnodes 20,683 easily be applied to wordnets for other languages.
Node classification time 1.2 seconds

The benefits of structure adaptation diminish
with increasing density of the network as more
and more nodes become part of the core graph. In
this case, the execution time will approach that of
Table 1: Structure-adapted path search — Summagye Floyd-Warshall algorithm. It is also obvious
of results that the approach does not generalize to arbitrary
graphs. As long as the structure of graphs is sim-
ilar to the star-like structure of wordnets, we ex-

slower the more nodes have been processed, this

value is likely to be even higher. GermaNet con.PeCt the approach to be beneficial in applications

tains only half of the synsets, and the Floyd-mvOIVIng such graphs as well.
Warshall algorithm completed in 120 hofurdrhe References

result, a matrix of 53,31253,312 elements, con-

taining the lengths of the shortest paths between djudanitsky, A. and Hirst, G. (2006). Evaluating
nodes, was written to a binary file whose size was WordNet-based Measures of Lexical Semantic
roughly 3 GB. Relatedness. I@omputational Linguistics, vol-

ume 32. Association for Computational Lin-

Floyd-Warshall path search 120 hours
Structure-adapted path search 40 minut

1%
(%2]

In the second program, we implemented the ~" ™
structure-adapted shortest path search approach94/Stcs:
For calculating shortest paths in the core graphellbaum, C. (1998)WordNet: An Electronic Lex-
area of the network, we used the same implemen- ical Database. MIT Press, Cambridge, MA.

tation Of the F|0yd-WarSha|| algorithm as in theKunze, C. and Lemnitzer, L. (2002) GermaNet
first program. With the same input data and the _ Representation, Visualization, Application. In
same machine, we were able to bring the execution proceedings of LREC, pages 1485-1491.

time down to 40 minutes for GermaNet, and only, . . . .
9 minutes for WordNet. This includes creating these\;jvge\lNICk’ R. (1990)Algorithms in C. Addison
output file, which had the same binary format as esiey
the one generated by the first program. The dif-
ference in processing time between WordNet and
GermaNet stems from the smaller core graph in
WordNet, which allows for even more nodes to be
excluded from the time consuming Floyd-Warshall
calculation. The results of the experiments are
summarized in table 1.

8The complexity of the Floyd-Warshall algorithm is cubic,
therefore twice as many synsets result in a processing effort
that is eight times higher.



