
Proceedings of the 22nd International Conference on Computational Linguistics (Coling 2008), pages 961–968
Manchester, August 2008

Coreference Systems based on Kernels Methods

Yannick Versley
SFB 441

University of Tübingen
versley@sfs.uni-tuebingen.de

Alessandro Moschitti
DISI

University of Trento
moschitti@disi.unitn.it

Massimo Poesio
DISI

University of Trento
massimo.poesio@unitn.it

Xiaofeng Yang
Data Mining Department

Institute for Infocomm Research
xiaofengy@i2r.a-star.edu.sg

Abstract

Various types of structural information -
e.g., about the type of constructions in
which binding constraints apply, or about
the structure of names - play a central role
in coreference resolution, often in combi-
nation with lexical information (as in ex-
pletive detection). Kernel functions ap-
pear to be a promising candidate to capture
structure-sensitive similarities and com-
plex feature combinations, but care is re-
quired to ensure they are exploited in the
best possible fashion. In this paper we
propose kernel functions for three subtasks
of coreference resolution - binding con-
straint detection, expletive identification,
and aliasing - together with an architec-
ture to integrate them within the standard
framework for coreference resolution.

1 Introduction

Information about coreference relations–i.e.,
which noun phrases are mentions of the same
entity–has been shown to be beneficial in a great
number of NLP tasks, including information
extraction (McCarthy and Lehnert 1995), text
planning (Barzilay and Lapata 2005) and sum-
marization (Steinberger et al. 2007). However,
the performance of coreference resolvers on
unrestricted text is still quite low. One reason
for this is that coreference resolution requires a
great deal of information, ranging from string
matching to syntactic constraints to semantic
knowledge to discourse salience information to

c© 2008. Licensed under theCreative Commons
Attribution-Noncommercial-Share Alike 3.0 Unportedli-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

full common sense reasoning (Sidner 1979; Hobbs
1978, 1979; Grosz et al. 1995; Vieira and Poesio
2000; Mitkov 2002). Much of this information
won’t be available to robust coreference resolvers
until better methods are found to represent and
encode common sense knowledge; but part of
the problem is also the need for better methods
to encode information that is in part structural,
in part lexical. Enforcing binding constraints
–e.g., ruling outPeteras antecedent ofhim in (1a)
requires recognizing that the anaphor occurs in a
particular type of construction (Chomsky 1981;
Lappin and Leass 1994; Yang et al. 2006) whose
exact definition however has not yet been agreed
upon by linguists (indeed, it may only be definable
in a graded sense (Sturt 2003; Yang et al. 2006)),
witness examples like (1b). Parallelism effects are
a good example of structural information inducing
preferences rather than constraints. Recognizing
that It in examples such as (1c,d) are expletives
requires a combination of structural information
and lexical information (Lappin and Leass 1994;
Evans 2001). But some sort of structure also
underlies our interpretation of other types of
coreference: e.g., knowledge about the structure
of names certainly plays a role in recognizing
that BJ Habibie is a possible antecedent forMr.
Habibie.

(1) a. John thinks that Peter hateshim.
b. John hopes that Jane is speaking only to

himself.
c. It ’s lonely here.
d. It had been raining all day.

The need to capture such information suggests
a role for kernel methods (Vapnik 1995) in coref-
erence resolution. Kernel functions make it pos-
sible to capture the similarity between structures

961

without explicitly enumerating all the substruc-
tures, and have therefore been shown to be a vi-
able approach to feature engineering for natural
language processing for any task in which struc-
tural information plays a role, e.g. (Collins and
Duffy 2002; Zelenko et al. 2003; Giuglea and Mos-
chitti 2006; Zanzotto and Moschitti 2006; Mos-
chitti et al. 2007). Indeed, they have already been
used in NLP to encode the type of structural in-
formation that plays a role in binding constraints
(Yang et al. 2006); however, the methods used in
this previous work do not make it possible to ex-
ploit the full power of kernel functions. In this
work, we extend the use of kernel functions for
coreference by designing and testing kernels for
three subtasks of the coreference task:

• Binding constraints

• Expletive detection

• Aliasing

and developing distinct classifiers for each of these
tasks. We show that our developed kernels produce
high accuracy for both distinct classifiers for these
subtasks as well as for the complete coreference
system.

In the remainder: Section 2, briefly describes
the basic kernel functions that we used; Section
3 illustrates our new kernels for expletive, binding
and name alias detection along with a coreference
context kernel; Section 4 reports the experiments
on individual classifiers on expletives, binding and
names whereas Section 5 shows the results on the
complete coreference task; Finally, Section 6 de-
rives the conclusions.

2 Kernel for Structured Data

We used three kernel functions in this work: the
String Kernel (SK) proposed in Shawe-Taylor and
Cristianini (2004) to evaluate the number of sub-
sequences between two sequences, the Syntactic
Tree Kernel (STK; see Collins and Duffy 2002)
which computes the number of syntactic tree frag-
ments and the Partial Tree Kernel (PTK; see Mos-
chitti 2006) which provides a more general repre-
sentation of trees in terms of tree fragments. We
discuss each in turn.

2.1 String Kernels (SK)

The string kernels that we consider count the num-
ber of substrings shared by two sequences contain-
ing gaps, i.e. some of the characters of the original

NP

D N

a cat

NP

D N

NP

D N

a

NP

D N

NP

D N

VP

V

brought

a cat

 cat
NP

D N

VP

V

a cat

NP

D N

VP

V

N

 cat

D

a

V

brought

N

Mary
…

Figure 1:A tree with some of its STFs .

NP

D N

VP

V

brought

a cat

NP

D N

VP

V

a cat

NP

D N

VP

a cat

NP

D N

VP

a

NP

D

VP

a

NP

D

VP

NP

N

VP

NP

N

NP NP

D N D

NP

…

VP

Figure 2:A tree with some of its PTFs.

string are skipped. Gaps penalize the weight asso-
ciated with the matched substrings. More in detail,
(a) longer subsequences receive lower weights.
(b) Valid substrings are sequences of the original
string with some characters omitted, i.e. gaps. (c)
Gaps are accounted by weighting functions and (d)
symbols of a string can also be whole words, i.e.
the word sequence kernel Cancedda et al. (2003).

2.2 Tree Kernels

The main idea underlying tree kernels is to com-
pute the number of common tree fragments be-
tween two trees without explicitly considering the
whole fragment space. The type of fragments char-
acterize different kernel functions. We consider
syntactic tree fragments (STFs) and partial tree
fragments (PTFs)

2.2.1 Syntactic Tree Kernels (STK)

An STF is a connected subset of the nodes and
edges of the original tree, with the constraint that
any node must have all or none of its children. This
is equivalent to stating that the production rules
contained in the STF cannot be partial. For ex-
ample, Figure 1 shows a tree with its PTFs:[VP [V

NP]] is an STF,[VP [V]] or [VP [NP]] are not STFs.

2.2.2 Partial Tree Kernel (PTK)

If we relax the production rule constraint over
the STFs, we obtain a more general substructure
type, i.e. PTF, generated by the application of par-
tial production rules, e.g. Figure 2 shows that[VP
[NP[D]]] is indeed a valid fragment. Note that
PTK can be seen as a STK applied to all possible
child sequences of the tree nodes, i.e. a string ker-
nel combined with a STK.

2.3 Kernel Engineering

The Kernels of previous section are basic functions
that can be applied to feature vectors, strings and

962

trees. In order to make them effective for a specific
task, e.g. for coreference resolution: (a) we can
combine them with additive or multiplicative op-
erators and (b) we can design specific data objects
(vectors, sequences and tree structures) for the tar-
get tasks.

It is worth noting that a basic kernel applied to
an innovative view of a structure yields a new ker-
nel (e.g. Moschitti and Bejan (2004); Moschitti
et al. (2006)), as we show below:

Let K(t1, t2) = φ(t1) · φ(t2) be a basic ker-
nel, wheret1 and t2 are two trees. If we mapt1
and t2 into two new structuress1 and s2 with a
mappingφM (·), we obtain: K(s1, s2) = φ(s1) ·
φ(s2) = φ(φM (t1)) · φ(φM (t2)) = φ′(t1) ·
φ′(t2)=K′(t1, t2), which is a noticeably different
kernel induced by the mappingφ′ = φ ◦ φM .

3 Kernels for Coreference Resolution

In this paper we follow the standard learning ap-
proach to coreference developed by Soon et al.
(2001) and also used the few variants in Ng and
Cardie (2002). In this framework, training and
testing instances consist of a pair (anaphor, an-
tecedent). During training, a positive instance is
created for each anaphor encountered by pairing
the anaphor with its closest antecedent; each of the
non-coreferential mentions between anaphor and
antecedent is used to produce a negative instance.
During resolution, every mention to be resolved is
paired with each preceding antecedent candidate
to form a testing instance. This instance is pre-
sented to the classifier which then returns a class
label with a confidence value indicating the likeli-
hood that the candidate is the antecedent.

The nearest candidate with a positive classifica-
tion will be selected as the antecedent of the pos-
sible anaphor. The crucial point is that in this ap-
proach, the classifier is trained to identify positive
and negative instances of the resolution process. In
previous work on using kernel functions for coref-
erence (Yang et al. 2006), structural information
in the form of tree features was included in the
instances. This approach is appropriate for iden-
tifying contexts in which the binding constraints
apply, but not, for instance, to recognize exple-
tives. In this work we adopted therefore a more
general approach, in which separate classifiers are
used to recognize each relevant configuration, and
their output is then used as an input to the coref-
erence classifier. In this section we discuss the

types of structures and kernel functions we used
for three different kinds of classifiers: expletive,
binding and alias classifiers. We then present the
results of these classifiers, and finally the results
with the coreference resolver as a whole.

3.1 Expletive Kernels

In written text, about a third of the occurrences
of the pronounit are not coreferent to a previ-
ous mention, but either refer to a general discourse
topic (it’s a shame) or do not refer at all, as in the
case of extraposed subjects (it is thought that . . .)
or weather verbs (it’s raining). It is desirable to
minimize the impact that these non-anaphoric pro-
nouns have on the accuracy of a anaphora resolu-
tion: Lappin and Leass (1994), for example, use
several heuristics to filter out expletive pronouns,
including a check for patterns including modal ad-
jectives (it is good/necessary/. . . that . . .), and cog-
nitive verbs (it is thought/believed/. . . that . . .).

Newer approaches to the problem use machine-
learning on hand-annotated examples: Evans
(2001) compares a shallow approach based on
surrounding lemmas, part-of-speech tags, and the
presence of certain elements such as modal adjec-
tives and cognitive verbs, trained on 3171 exam-
ples from Susanne and the BNC to a reimplemen-
tation of a pattern-based approach due to Paice and
Husk (1987) and finds that the shallower machine-
learning approach compares favorably to it. Boyd
et al. (2005) use an approach that combines some
of Evans’ shallow features with hand-crafted pat-
terns in a memory based learning approach and
find that the more informative features are ben-
eficial for the system’s performance (88% accu-
racy against 71% for their reimplementation using
Evans’ shallow features).

Evans’ study also mentions that incorporating
the expletive classifier as a filter for a pronoun re-
solver gives a gain between 2.86% (for manually
determined weights) and 1% (for automatically op-
timized weights).

Tree kernels are a good fit for expletive classi-
fication since they can naturally represent the lex-
ical and structural context around a word. Our fi-
nal classifier uses the combination of an unmodi-
fied tree (UT) (where the embedding clause or verb
phrase of the pronoun is used as a tree), and a tree
that only preserves the most salient structural fea-
tures (ST).

The reduced representation prunes all nodes that

963

would not be seen as indicative in a pattern ap-
proach, essentially keeping verb argument struc-
ture and important lexical items, such as the gov-
erning verb and, in the case of copula construc-
tions, the predicate. For example, the phrase

(S (NP (PRP It))
(VP (VBZ has)

(NP (NP (DT no) (NN bearing))
(PP (IN on)

(NP (NP (PRP$ our)
(NN work)
(NN force))

(NP (NN today)))))
(. .))

would be reduced to the ST:

(S-I (NP-I (PRP-I It))
(VP (VBX have)

(NP))
(.))

or, in a similar fashion,

(S (NP (PRP it))
(VP (VBZ ’s)

(NP (NP (NN time))
(PP (IN for)

(NP (PRP$ their)
(JJ biannual)
(NN powwow))))))

would just be represented as the ST:

(S-I (NP-I (PRP-I it))
(VP (BE VBZ)

(NP-PRD (NN time))))

3.2 Binding Kernels

The resolution of pronominal anaphora heavily re-
lies on the syntactic information and relationships
between the anaphor and the antecedent candi-
dates, including binding and other constraints, but
also context-induced preferences in sub-clauses.

Some researchers (Lappin and Leass 1994;
Kennedy and Boguraev 1996) use manually de-
signed rules to take into account the grammati-
cal role of the antecedent candidates as well as
the governing relations between the candidate and
the pronoun, while others use features determined
over the parse tree in a machine-learning approach
(Aone and Bennett 1995; Yang et al. 2004; Luo
and Zitouni 2005). However, such a solution has
limitations, since the syntactic features have to be
selected and defined manually, and it is still partly
an open question which syntactic properties should
be considered in anaphora resolution.

We follow (Yang et al. 2006; Iida et al. 2006) in
using a tree kernel to represent structural informa-
tion using the subtree that covers a pronoun and its
antecedent candidate. Given a sentence like “The

Figure 3: The structure for binding detection for
the instance inst(“the man”, “him”) in the sentence
‘the man in the room saw him”

man in the room saw him.”, we represent the syn-
tactic relation between “The man” and “him”, by
the shortest node path connecting the pronoun and
the candidate, along with the first-level of the node
children in the path.

Figure 3 graphically shows such tree highlighted
with dash lines. More in detail we operate the fol-
lowing tree transformation:
(a) To distinguish from other words, we explic-
itly mark up in the structured feature the pronoun
and the antecedent candidate under consideration,
by appending a string tag “ANA” and “CANDI”
in their respective nodes, i.e. “NN-CANDI” for
“man” and “PRP-ANA” for “him”.
(b) To reduce the data sparseness, the leaf nodes
representing the words are not incorporated in the
feature, except that the word is the word node of
the “DET” type (this is to indicate the lexical prop-
erties of an expression, e.g., whether it is a definite,
indefinite or bare NP).
(c) If the pronoun and the candidate are not in the
same sentence, we do not include the nodes denot-
ing the sentences (i.e., “S” nodes) before the can-
didate or after the pronoun.

The above tree structures will be jointly used
with the basic STK which extracts tree fragments
able to characterize the following information: (a)
the candidate is post-modified by a preposition
phrase, (the node “PP” for “in the room” is in-
cluded), (b) the candidate is a definite noun phrase
(the article word “the” is included), (c) the candi-
date is in a subject position (NP-S-VP structure),
(d) the anaphor is an object of a verb (the node
“VB” for “saw” is included) and (e) the candidate
is c-commanding the anaphor (the parent of the
NP node for “the main in the room” is dominat-
ing the anaphor (“him”), which are important for
reference determination in the pronoun resolution.

964

3.3 Encoding Context via Word Sequence
Kernel

The previous structures aim at describing the in-
teraction between one referential and one referent;
if such interaction is observed on another mention
pair, an automatic algorithm can establish if they
corefer or not. This kind of information is the most
useful to characterize the target problem, however,
the context in which such interaction takes place is
also very important. Indeed, natural language pro-
poses many exceptions to linguistic rules and these
can only be detect by looking at the context. To be
able to represent context words or phrases, we use
context word windows around the mentions and
the subsequence kernel function (see section 2.1)
to extract many features from it.

For example, in the context of “and so Bill
Gates says that”, a string kernel would ex-
tract features including: Bill Gatessaysthat,
saysthat, Gates, Gatessaysthat, Bill saysthat,
so Gatessaysthat, and so that and so on.

Name Alias
BJ Habibie Mr. Habibie
Federal Express Fedex
Ju Rong Zhi Ju

Table 1: Examples of coreferent named entities
(aliases) taken from the MUC 6 corpus.

3.4 Kernels for Alias Resolution

Most methods currently employed by coreference
resolution (CR) systems for identifying coreferent
named entities, i.e. aliases, are fairly simplistic in
nature, relying on simple surface features such as
the edit distance between two strings representing
names. We investigate the potential of using the
structure contained within names. This can be very
useful to solve complex cases like those shown in
Table 1, taken from the MUC 6 corpus (Chinchor
and Sundheim 2003). For this purpose, we add
syntactic information to the feature set by tagging
the parts of a name (e.g.first name, last name, etc.)
as illustrated in Figure 4.

To automatically extract such structure we used
the High Accuracy Parsing of Name Internal Struc-
ture (HAPNIS) script1. HAPNIS takes a name as
input and returns a tagged name like what is shown
in Figure 4. It uses a series of heuristics in making
its classifications based on information such as the

1The script is freely available at
http://www.cs.utah.edu/ hal/HAPNIS/.

Figure 4: A proper name labeled with syntactic in-
formation.

serial positions of tokens in a name, the total num-
ber of tokens, the presence of meaningful punctua-
tion such as periods and dashes, as well as a library
of common first names which can be arbitrarily ex-
tended to any size. The tag set consists of the fol-
lowing: surname, forename, middle, link, role, and
suffix2.

Once the structure for a name has been de-
rived, we can apply tree kernels to represent it in
the learning algorithms thus avoiding the manual
feature design. Such structures are not based on
any particular grammar, therefore, any tree sub-
part may be relevant. In this case the most suitable
kernel is PTK, which extracts any tree subpart. It
is worth to note that the name tree structure can
be improved by inserting a separate node for each
name character and exploiting the string matching
approximation carried out by PTK. For example,
Microsoft Inc. will have a large match withMi-
crosoft Incorporatedwhereas the standard string
matching would be null.

4 Experiments with Coreference Subtask
Classifiers

In these experiments we test the kernels devised for
expletive (see Section 3.1), binding (see Section
3.2) and alias detection (see Section 3.4), to study
the level of accuracy reachable by our kernel-based
classifiers. The baseline framework is constituted
by SVMs along with a polynomial kernel over the
Soon et al.’s features.

4.1 Experiments on Expletive Classification

We used the BBN Pronoun corpus3 as a source of
examples, with the training set consisting of sec-
tions 00-19, yielding more than 5800 instances of

2Daumé reports a 99.1% accuracy rate on his test data set.
We therefore concluded that it was sufficient for our purposes.

3Ralph Weischedel and Ada Brunstein (2005): BBN Pro-
noun Coreference and Entity Type Corpus, LDC2005T33

965

it, with the testing set consisting of sections 20 and
21, using the corresponding parses from the Penn
Treebank for the parse trees. Additionally, we re-
port on the performance of the classifier learnt on
only the first 1000 instances to verify that our ap-
proach also works for small datasets. The results
in Table 2 show that full tree (UT) achieves good
results whereas the salient tree (ST) leads to a bet-
ter ability to generalize, and the combination ap-
proach outperforms both individual trees.

BBN large BBN small
Prec Recl Acc Prec Recl Acc

UT 83.87 61.54 84.35 78.76 52.66 80.85
ST 78.08 67.46 83.98 77.61 61.54 82.50
UT+ST 81.12 68.64 85.27 80.74 64.50 84.16

Table 2: Results for kernel-based expletive detec-
tion (using STK)

Note that the accuracy we get by training on
1000 examples (84% accuracy; see thesmall col-
umn in Table 2) is better than Boyd’s replication of
Evans (76% accuracy) or their decision tree clas-
sifier (81% accuracy) even though Boyd et al.’s
dataset is three times bigger. On the other hand,
Boyd et al’s full system, which uses substantial
hand-crafted knowledge, gets a still better result
(88% accuracy), which is also higher than the ac-
curacy of our classifier even when trained on the
full 5800 instances.

MUC-6
Prec Recl F

Soon et al. 51.25 55.51 53.29
STK 71.93 55.41 62.59

Table 3: Binding classifier: coreference classifica-
tion on same-sentence pronouns

4.2 Experiments with the Binding Classifier

To assess the effect of the binding classifier on
same-sentence pronoun links, we extracted 1398
mention pairs from the MUC-6 training data where
both mentions were in the same sentence and at
least one item of the pair included a pronoun, us-
ing the first 1000 for training and the remaining
398 examples for testing. The results (see Table 3)
show that the syntactic tree kernel (STK) consider-
ably improves the precision of classification of the
Soon et al.’s features.

4.3 Experiments on Alias Classification

For our preliminary experiments, we extracted
only pairs in the MUC 6 testing set in which both

mentions were proper names, as determined by
the coreference resolver’s named entity recognizer.
This set of proper names contained about 37,000
pairs of proper names of which about 600 were
positive instances. About 5,500 pairs were ran-
domly selected as test instances and the rest were
used for training.

In the first experiment, we trained a decision
tree classifier to detect if two names are aliases.
For this task, we used either the string kernel score
over the sequence of characters or the edit distance.
The results in Table 4 show that the string kernel
score performs better by 21.6 percentage points in
F-measure.

In the second experiments we used SVMs
trained with the string kernel over the name-
character sequences and with PTK, which takes
into account the structure of names. The re-
sults in Table 5 show that the structure improves
alias detection by almost 5 absolute percent points.
This suggests that an effective coreference sys-
tem should embed PTK and name structures in the
coreference pair representation.

Recall Precision F-measure
String kernel 49.5% 60.8% 54.6%
Edit distance 23.9% 53.1% 33.0%

Table 4: Decision-tree based classification of name
aliases using string kernels and edit distance.

Recall Precision F-measure
String kernel 58.4% 67.5% 62.6%
PTK 64.8% 70.0% 67.3%

Table 5: SVM-based classification of name aliases
using string kernels and tree-based feature.

5 Experiments on Coreference Systems

In this section we evaluate the contribution in the
whole coreference task of the expletive classifier
and the binding kernel. The predictions of the for-
mer are used as a feature of our basic coreference
system whereas the latter is used directly in the
coreference classifier by adding it to the polyno-
mial kernel of the basic system.

Our basic system is based on the standard learn-
ing approach to coreference developed by Soon
et al. (2001). It uses the features from Soon et
al’s work, including lexical properties, morpho-
logic type, distance, salience, parallelism, gram-
matical role and so on. The main difference with

966

Soon et al. (2001) is the use of SVMs along with a
polynomial kernel.

MUC-6
Prec Recl F

plain 65.2 66.9 66.0
plain+expletive 66.1 66.9 66.5
upper limit 70.0 66.9 68.4

Table 6: Expletive classification: influence on pro-
noun resolution

5.1 Influence of Expletive classification

To see how useful a classifier for expletives can
be, we conducted experiments using the expletive
classifier learned on the BBN pronoun corpus on
the MUC-6 corpus. Preliminary experiments indi-
cated that perfect detection of expletives (i.e. using
gold standard annotation) could raise the precision
of pronoun resolution from 65.2% to 70.0%, yield-
ing a 2.4% improvement in the F-score for pronoun
resolution alone, or 0.6% improvement in the over-
all coreference F-score (see Table 6).

For a more realistic assessment, we used the
classifier learned on the BBN pronoun corpus ex-
amples as an additional feature to gauge the im-
provement that could be achieved using it. While
the gain in precision is small even in comparison
to the achievable error reduction, we need to keep
in mind that our baseline is in fact a well-tuned
system.

MUC-6 ACE02-BNews
R P F R P F

PK 64.3 63.1 63.7 58.9 68.1 63.1
PK+TK 65.2 80.1 71.9 65.6 69.7 67.6

Table 7: Results of the pronoun resolution

5.2 Binding and Context Kernels

In these experiments, we compared our corefer-
ence system based on Polynomial Kernel (PK)
against its combinations with Syntactic Tree Ker-
nels (STK) over the binding structures (Sec. 3.2)
and Word Sequence Kernel (WSK) on context
windows (Sec. 3.3). We experimented with
both the only pronoun and the complete corefer-
ence resolution tasks on the standard MUC-6 and
ACE03-BNews data sets.

On the validation set, the best kernel combina-
tion between PK and STK wasSTK(T1, T2) ·
PK(~x1, ~x2)+PK(~x1, ~x2). Then an improvement
arises when simply summing WSK.

Table 7 lists the results for the pronoun resolu-
tion. We usedPK on the Soon et al.’s features as
the baseline. On MUC-6, the system achieves a
recall of 64.3% and precision 63.1% and an over-
all F-measure of 63.7%. On ACE02-BNews, the
recall is lower 58.9% but the precision is higher,
i.e. 68.1%, for a resulting F-measure of 63.1%.
In contrast, adding the binding kernel (PK+STK)
leads to a significant improvement in 17% preci-
sion for MUC-6 with a small gain (1%) in recall,
whereas on the ACE data set, it also helps to in-
crease the recall by 7%. Overall, we can see an
increase in F-measure of around 8% for MUC and
4.5% for ACE02-BNews. These results suggest
that the structured feature is very effective for pro-
noun resolution.

MUC-6 ACE02-BNews
R P F R P F

PK 61.5 67.2 64.2 54.8 66.1 59.9
PK+STK 63.4 67.5 65.4 56.6 66.0 60.9
PK+STK+WSK 64.4 67.8 66.0 57.1 65.4 61.0

Table 8: Results of the coreference resolution

Table 8 lists the results on the coreference res-
olution. We note that adding the structured fea-
ture to the polynomial kernel, i.e. using the model
PK+STK, improves the recall of 1.9% for MUC-
6 and 1.8% for ACE-02-BNews and keeps invari-
ant the precision. Compared to pronoun resolu-
tion, the improvement of the overall F-measure is
smaller (about 1%). This occurs since the resolu-
tion of non-pronouns case does not require a mas-
sive use of syntactic knowledge as in the pronoun
resolution problem. WSK further improves the
system’s F1 suggesting that adding structured fea-
tures of different types helps in solving the coref-
erece task.

6 Conclusions

We presented four examples of using kernel-based
methods to take advantage of a structured repre-
sentation for learning problems that arise in coref-
erence systems, presenting high-accuracy classi-
fiers for expletive detection, binding constraints
and same-sentence pronoun resolution, and name
alias matching. We have shown the accuracy
of the individual classifiers for the above tasks
and the impact of expletives and binding classi-
fiers/kernels in the complete coreference resolu-
tion system. The improvement over the individual
and complete tasks suggests that kernel methods

967

are a promising research direction to achieve state-
of-the-art coreference resolution systems.

Future work is devoted on making the use of ker-
nels for coreference more efficient since the size of
the ACE-2 corpora prevented us to directly use the
combination of all kernels that we designed. In this
paper, we have also studied a solution which re-
lates to factoring out decisions into separate clas-
sifiers and using the decisions as binary features.
However, this solution shows some loss in terms of
accuracy. We are currently investigating methods
that allow us to combine the accuracy and flexibil-
ity of the integrated approach with the speed of the
separate classifier approach.

Acknowledgements Y. Versley was funded by the

Deutsche Forschungsgemeinschaft as part of SFB (Collabora-

tive Research Centre) 441. A. Moschitti has been partly sup-

ported by the FP6 IST LUNA project (contract No. 33549).

Part of the work reported in this paper was done at the Johns

Hopkins Summer Workshop in 2007, funded by NSF and

DARPA. We are especially grateful for Alan Jern’s implemen-

tation help for name structure identification.

References
Aone, C. and Bennett, S. W. (1995). Evaluating automated

and manual acquisition of anaphora resolution strategies.
In Proc. ACL 1995, pages 122–129.

Barzilay, R. and Lapata, M. (2005). Modelling local coher-
ence: An entity-based approach. InProc. of ACL, Ann
Arbor, MI.

Boyd, A., Gegg-Harrison, W., and Byron, D. (2005). Iden-
tifying non-referential it: a machine learning approach in-
corporating linguistically motivated features. InProc. ACL
WS on Feature Engineering for Machine Learning in Nat-
ural Language Processing.

Cancedda, N., Gaussier, E., Goutte, C., and Renders, J. M.
(2003). Word sequence kernels.JMLR, 3:1059–1082.

Chinchor, N. and Sundheim, B. (2003). Muc 6 corpus.Mes-
sage Understanding Conference (MUC) 6.

Chomsky, N. (1981).Lectures on government and binding.
Foris, Dordrecht, The Netherlands.

Collins, M. and Duffy, N. (2002). New ranking algorithms for
parsing and tagging: kernels over discrete structures and
the voted perceptron. InProc. ACL 2002, pages 263–270.

Evans, R. (2001). Applying machine learning toward an au-
tomatic classification of it.Literary and Linguistic Com-
puting, 16(1):45–57.

Giuglea, A.-M. and Moschitti, A. (2006). Semantic role la-
beling via framenet, verbnet and propbank. InProceedings
of Coling-ACL, Sydney, Australia.

Grosz, B., Joshi, A., and Weinstein, S. (1995). Centering: a
framework for modeling the local coherence of discourse.
CL, 21(2):203–225.

Hobbs, J. (1978). Resolving pronoun references.Lingua,
44:339–352.

Hobbs, J. (1979). Resolving pronoun references.Coherence
and Coreference, 3(1):67–90.

Iida, R., Inui, K., and Matsumoto, Y. (2006). Exploiting syn-
tactic patterns as clues in zero-anaphora resolution. In
Proc. Coling/ACL 2006, pages 625–632.

Kennedy, C. and Boguraev, B. (1996). Anaphora for every-
one: pronominal anaphora resolution without a parser. In
Proc. Coling 1996.

Lappin, S. and Leass, H. (1994). An algorithm for pronominal
anaphora resolution.CL, 20(4):525–561.

Luo, X. and Zitouni, I. (2005). Multi-lingual coreference res-
olution with syntactic features. InProc. HLT/EMNLP 05.

McCarthy, J. and Lehnert, W. (1995). Using decision trees for
coreference resolution. InProc. IJCAI 1995.

Mitkov, R. (2002).Anaphora resolution. Longman.

Moschitti, A. (2006). Efficient convolution kernels for depen-
dency and constituent syntactic trees.Proc. ECML 2006.

Moschitti, A. and Bejan, C. A. (2004). A semantic kernel for
predicate argument classification. InCoNLL-2004, USA.

Moschitti, A., Pighin, D., and Basili, R. (2006). Semantic
Role Labeling via Tree Kernel Joint Inference. InPro-
ceedings of CoNLL-X.

Moschitti, A., Quarteroni, S., Basili, R., and Manandhar, S.
(2007). Exploiting syntactic and shallow semantic kernels
for question answer classification. InProceedings ACL,
Prague, Czech Republic.

Ng, V. and Cardie, C. (2002). Improving machine learning
approaches to coreference resolution. InProc. ACL 2002.

Paice, C. D. and Husk, G. D. (1987). Towards an automatic
recognition of anaphoric features in english text: The im-
personal pronoun ‘it’. Computer Speech and Language,
2:109–132.

Shawe-Taylor, J. and Cristianini, N. (2004).Kernel Methods
for Pattern Analysis. Cambridge University Press.

Sidner, C. (1979). Toward a computational theory of definite
anaphora comprehension in english. Technical report AI-
TR-537, MIT, Cambridge, MA.

Soon, W., Ng, H., and Lim, D. (2001). A machine learning
approach to coreference resolution of noun phrases.CL,
27(4):521–544.

Steinberger, J., Poesio, M., Kabadjov, M., and Jezek, K.
(2007). Two uses of anaphora resolution in summarization.
Information Processing and Management, 43:1663–1680.
Special issue on Summarization.

Sturt, P. (2003). The time-course of the application of binding
constraints in reference resolution.Journal of Memory and
Language.

Vapnik, V. (1995).The Nature of Statistical Learning Theory.
Springer.

Vieira, R. and Poesio, M. (2000). An empirically based sys-
tem for processing definite descriptions.CL, 27(4):539–
592.

Yang, X., Su, J., and Tan, C. (2006). Kernel-based pronoun
resolution with structured syntactic knowledge. InProc.
COLING-ACL 06.

Yang, X., Su, J., Zhou, G., and Tan, C. (2004). Improving pro-
noun resolution by incorporating coreferential information
of candidates. InProc. ACL 2004.

Zanzotto, F. M. and Moschitti, A. (2006). Automatic learn-
ing of textual entailments with cross-pair similarities. In
Proceedings of Coling-ACL, Sydney, Australia.

Zelenko, D., Aone, C., and Richardella, A. (2003). Kernel
methods for relation extraction.JMLR, 3(6):1083 – 1106.

968

